128 resultados para Hydrothermal calcite
Resumo:
The oscillatory thermocapillary convection and hydrothermal wave in a shallow liquid layer, where a temperature difference is applied between two parallel sidewalls, have been numerically investigated in a two-dimensional model. The oscillatory thermocapillary convection and hydrothermal wave appear if the Marangoni number is larger than a critical value. The critical phase speed and critical wave number of the hydrothermal wave agree with the ones given analytically by Smith and Davis in the microgravity environment, and it travels in the direction opposed to the surface flow. Another wave traveled downstream in addition to the hydrothermal wave traveled upstream was observed in the case of earth gravity condition.
Resumo:
The hydrothermal wave was investigated numerically for large-Prandtl-number fluid (Pr = 105.6) in a shallow cavity with different heated sidewalls. The traveling wave appears and propagates in the direction opposite to the surface flow (upstream) in the case of zero gravity when the applied temperature difference grows and over the critical value. The phase relationships of the disturbed velocity, temperature and pressure demonstrate that the traveling wave is driven by the disturbed temperature, which is named hydrothermal wave. The hydrothermal wave is so weak that the oscillatory flow field and temperature distribution can hardly be observed in the liquid layer. The exciting mechanism of hydrothermal wave is analyzed and discussed in the present paper.
Resumo:
Linear stability analysis was performed to study the mechanism of transition of thermocapillary convection in liquid bridges with liquid volume ratios ranging from 0.4 to 1.2, aspect ratio of 0.75 and Prandtl number of 100. 2-D governing equations were solved to obtain the steady axi-symmetric basic flow and temperature distributions. 3-D perturbation equations were discretized at the collocation grid points using the Chebyshev-collocation method. Eigenvalues and eigenfunctions were obtained by using the Q-R. method. The predicted critical Marangoni numbers and critical frequencies were compared with data from space experiments. The disturbance of the temperature distribution on the free surface causes the onset of oscillatory convection. It is shown that the origin of instability is related to the hydrothermal origin for convections in large-Prandtl-number liquid bridges. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Composite sapphire/Ti:sapphire crystals for high-power laser application were grown by the hydrothermal method. The results of the X-ray rocking curve analysis indicate high crystalline quality of the surface Al2O3 material. The strong bonding between the overgrown Al2O3 and seed Ti:Al2O3 crystals is indispensable for withstanding high thermal stresses produced by intense optical pumping. The optical loss at the boundary of the composite crystal is considerably low, indicating the lack of scattering centers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Well-aligned ZnO films have been successfully prepared by using low-temperature hydrothermal approach on (0001) sapphire substrates that were pre-coated with a ZnO nano-layer by dip-coating. The characterizations of scanning electron microscopy (SEM) and X-ray diffraction (XRD) indicate that the ZnO films consist of hexagonal rods that grow along the c axis based on the sapphire substrates. It is found that the size of ZnO rods can be adjusted by an aqueous solution with some methenamine. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
ZnO crystals with dimensions of 30 x 38 x 8 turn 3 have been grown by the hydrothermal method using a mixed solution of KOH, LiOH and H2O2. The growing rates for +c(0001) and -c(000 (1) over bar) were 0.17 and 0.09 mm/day, respectively. The crystal color was very light green for +c sector and dark brown for -c sector. For the +c sector, the resistivity at room temperature was 80 0 cm, the carrier concentration was about 10(4)/cm(3), and the mobility was about 100 cm(2)/Vs. The full-width at half-maximum (FWHM) of double axis X-ray rocking curve for the polished Zn face cut from +c sector was 45 arcsec. The photoluminescence (PL) spectrum and the absorption spectrum of +c part of the crystals at room temperature were also reported and discussed in this paper. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The novel hexagon SnO2 nanosheets are successfully synthesized in ethanol/water solution by hydrothermal process. The samples are characterized by X-ray diffraction (XRD), infrared ray (IR) and transmission electron microscopy (TEM). By changing the reaction conditions, the size and the morphology can be controlled. Comparison experiments show that when the temperature increased from 140 degrees C to 180 degrees C, the edge length of the hexagon nanoparticles increases from 300-450 nm to 700-900 nm. On the other hand, by adjusting the ratios of water to ethanol from 2 to 0.5, SnO2 nanoparticles with different morphologies of triangle and sphere are obtained. When the concentration of NaOH is increased from 0.15 M to 0.30 M, a hollow ring structure can be obtained. (c) 2006 Elsevier B.V. All rights reserved.