43 resultados para Hg~(2 ) POD
Resumo:
通过水培实验研究了0、10、20、50、70和100 mg.L-1 Hg2+和65 U.mL-1的过氧化物酶(POD)混合浸种对小麦(Triticum aestivum L.)萌发及幼苗生长过程中的10个形态和生理生化指标的影响。结果表明:施加外源POD可明显提高种子发芽率、植株日均增重和幼苗叶片的可溶性蛋白含量,增加幼苗叶片内源超氧物歧化酶(SOD)和POD的活性,拮抗Hg2+胁迫对种子发芽率、苗高、日均增重及叶片可溶性蛋白含量的不利影响,Hg2+浓度较高时(≥50 mg.L-1),对种子发芽率和日均增
Resumo:
利用水族箱实验研究了伊乐藻的现存量以及POD和SOD活性在Hg2+、Cd2+及其联合胁迫下的响应特点.结果表明:Hg2+和Cd2+对伊乐藻的联合毒性大于单一的毒性;在Hg2+20μmol.L-1,或Cd2+80μmol.L-1,或Hg2++Cd2+50μmol.L-1([Hg2+]/[Cd2+]=1/4)时,植物现存量增加的百分比与金属离子浓度负相关;高于上述浓度时,植物现存量减少的速率明显降低.POD和SOD活性的变化趋势相似,在6 h时,其活性在低于40μmol.L-1的Hg2+、或160μmol.L
Resumo:
利用微宇宙系统研究了不同浓度的Hg2+、Cd2+单一及复合处理下,苦草对这三种胁迫的响应。三种胁迫下,3d内苦草现存量增加百分比与金属离子浓度间显著负相关,其中在[Hg2+]或[Hg2++Cd2+]([Hg2+]/[Cd2+]=1)>5μmol/L时,2~3d可致死;总生产力、净生产力、呼吸强度以及叶绿素含量均随着金属离子浓度的增加而下降,同时叶绿素含量还随着胁迫时间的延长而降低,但上述四个指标在低浓度胁迫时常略有升高;可溶性蛋白含量在[Hg2+]或[Hg2++Cd2+]≤2.5μmol/L、以及[Cd2
Resumo:
利用水生微宇宙系统研究了不同浓度的Hg2+、Cd2+单一及复合处理对伊乐藻可溶性蛋白质浓度、叶绿素含量、叶绿素a/b比值,以及生产力和呼吸作用的影响.可溶性蛋白质和叶绿素含量在低浓度胁迫时(Hg2+≤2.5μmol/L,Cd2+≤10μmol/L,Hg2++Cd2+≤1.25μmol/LHg2++5μmol/LCd2+)略有升高,之后随胁迫的增强而持续下降,两者呈负相关;叶绿素a/b比值、净生产力、呼吸强度随离子浓度增加不断下降,除呼吸强度外,两者也呈负相关.Hg2+对伊乐藻的毒性是Cd2+的4倍左右(以
Resumo:
本文提出了一种新的高巯基粉状巯基棉的合成方法,按此法合成的流基棉含量在2.2%~2.5%之间.在盐酸介质中,用溴水在室温下快速分解甲基汞,冷原子荧光测定的新方法.将粉状巯基棉与稀释剂按一定比例混合装柱,用于富集水体中溶解态痕量Hg~(2+)和CH_3Hg~+,富集流速100ml/min.检出限CH_3Hg~+为4.2×10~(-5)μg/l,Hg~(2+)为6.6×10~(-5)μg/l.
Resumo:
简要综述了藻类生物技术在水污染生态毒理学和污水生物净化方面的研究成果及应用实例,同时对其研究前景进行了探讨。应用藻类生物检测技术对重金属、农药、有机污染物、有毒有害废弃物等的毒性评价结果证明,一些二价重金属阳离子对藻类的毒性顺序大致为Hg~(2+),Cd~(2+),Cu~(2+),Ni~(2+)和 Zn~(2+);酚类、酯类和芳烃类有机污染物对藻类生长的抑制作用十分显著;农药对藻类的毒害作用主要通过破坏藻类生物膜的结构和功能而抑制藻类的光合作用、呼吸作用和固氮作用。有关藻类污水处理的研究资料显示,阳光的强
Resumo:
鲤鱼白肌中核糖核酸与脱氧核糖核酸的比值(RNA/DNA)可作为种群生长的生理指标,并用此指标预测和评价生态环境、饲养条件的优劣对其生长可能产生的影响。鱼体白肌中RNA/DAN值与其生长率呈正相关(r=0.8994);鱼体增重率和RNA/DNA值的季节变动规律基本一致,都是在9-10月最高,4月次之,11-12月最低。鲤鱼生长良好时,RNA/DNA值大于2.0;反之,低于2.0;Hg~(2+)浓度达到0.005mg/l时,才对鲤鱼的生长产生显著影响,并在RNA/DNA值上显示出来。用RNA/DNA值评价鱼的
Resumo:
不同季节捕获的草鱼在实验室(16±4℃)驯化3—7天,其鳃ATPase活力在显著性水平为0.05时,不同批鱼无显著差异。离体实验条件下,汞、三氯联苯、直链烷基苯磺酸钠对草鱼组织ATPase的半抑制浓度分别为1.8ppM(肾),1.84ppM(鳃),3.9ppM(鳃);Hg~(2+)对肾的作用大于对鳃的作用。草鱼组织ATPase可作为一项指标用于毒理学研究。
Resumo:
在我国某些地区,汞的污染已达到十分严重的程度。如,第二松花江吉林市下游江段,江水总汞含量和鱼体含汞量已能和日本严重汞污染的水俣湾相比。在化学工业,仪表工业中,汞中毒列为严重性占第二位的职业病。因此,汞的污染防治已是急待解决的问题。各种含硫螯合剂可应用于含汞污水处理及汞中毒的治疗。Nyssen等1976年合成了一种缩聚型的缩硫醛大环螯合树脂,作者希望它能成为汞中毒的口服解毒药物。这种产物对Hg~(++)和CH_3Hg~+表现了极强的选择络合性能。但是由于其交联结构不利于Hg~(++)深入树脂内部,因此络合容量太低,仅为2毫克Hg~(++)/克。为了提高其络合能力并进而得到一种水溶性产物,我们合成了二种新的高分子缩硫醛大环螯合剂;其一,以聚苯乙烯为载体的缩硫醛大环螯合剂(简写为PS-S)。其二,以右旋糖苷为载体的缩硫醛大环螯合剂(简写为D-S)。前者做为螯合树脂表现了对Hg~(++)极强的选择络合能力,并且络合容量比缩聚型产物高十倍以上(达30-60毫克Hg~(++)/克)。后者经动物实验证明是一种无毒而有效的高分子汞解毒药。(一)PS-S的合成和络合性能1)醛基的引入采用了不同交联度的凝胶型聚苯乙烯(PS)树脂及不同孔径和表面的大孔型PS树脂做为骨架材料,并采用了二种不同的方法在PS上联结醛基。2)PS-S的合成采用了一系列巯基化合物与PS-CHO反应合成PS-S。例如,用乙二醇二巯基乙酸酯与PS-CHO反应,其它采用的巯基化合物还有:丁二醇二巯基乙酸酯、季戊四醇四巯基乙酸酯、乙硫醇、巯基乙酸、巯基乙酸乙酯等。同一骨架材料的上述各产物的静态Hg~(++)络合容量基本相同,可是含硫环的大小对络合容量影响不大。3)缩硫醛化产物模型化合物的研究合成了几种小分子缩硫醛化产物,对它们进行了MS、NMR谱分析,从以上三种不同类型的缩硫醛化产物本身及其对Hg~(++)作用物的稳定性比较,以第二类大环型产物稳定性最好。4)不同骨架结构的PS-S络合性能比较对不同交联度的凝胶型PS树脂为骨架的PS-S树脂,及不同孔经和比表面积的大孔型PS树脂为骨架的PS-S树脂,分别测定了对Hg~(++)的络合容量,结果表明:大孔型PS-S树脂络合容量最高。当其孔径在100-1000埃,比表面积100米~2/克时,静态络合容量可达65毫克Hg~(++)/克。5)大孔PS-S树脂络合性能的研究①研究了不同测定方法下(静态法、动态法、饱和法),不同测定条件(如树脂用量、Hg~(++)溶液浓度等)对产物络合容量测定的影响。在PS-S装柱反复络合洗脱十次后,树脂络合容量不下降。②不同PH测定PS-S络合容量表明:中性条件下对Hg~(++)络合容量较高。某些有机溶剂(如乙醇、二氧六环)加入Hg~(++)水溶液有利于络合容量的提高。而某些有机溶剂(如丙酮、乙酸)的添加却降低了树脂络合容量。③大孔PS-S树脂对不同金属离子(Pb~(++)、Co~(++)、Cd~(++)、Ca~(++)、Zn~(++))络合容量的测定表明:大孔PS-S树脂对Hg~(++)的络合容量比上述其它金属离子高几十倍到近千倍。(二)D-S的合成与性能研究了介质、温度、时间、反应物用量等条件对反应结果的影响,反应所用Dextran分子量31600,生成的D-CHO含醛基量0.66毫克当量/克。生成的D-S含硫量3.5~6%,分子量约3600。(三)PS-S和D-S对汞中毒巯基酶的解毒实验生物体汞中毒的一个重要毒理是汞使巯基酶中毒,我们采用了PS-S和D-S来对汞中毒的巯基酶-脲酶解毒,使失活的脲酶重新恢复活力,模拟药物在生物体内的解毒过程。实验表明:PS-S和D-S的解毒能力比相同重量的离子交换树脂、巯基树脂、巯基棉等都要强。而且很少量的PS-S和D-S就能使脲酶100%的恢复活力。不同用量的PS-S和D-S使汞中毒脉酶恢复活力的试验显示了良好的线性关系,尤其是D-S,它几乎等当量地(每二个硫原子络合一个汞原子)使汞中毒脲酶恢复活力。(四)D-S的汞解毒及代谢促排过程的同位素示踪试验1)当给小白鼠静脉注射极限注射量(达1毫升/只鼠)的6%D-S水溶液时未发生受试动物的死亡,即LD_(50) > 4000毫克/公斤体重,说明D-S是无毒的。同时病理镜检表明动物肝肾此时无异常。2)分别对10只小白鼠静注致死量的Hg~(++),对其中一组注射D-S(0.2毫升/只)一次,结果3小时后对照组动物全部死亡时,给药组尚存活6只。D-S表面了对受试动物良好的保护作用。病理镜检表明D-S使肾脏的汞中毒病变有所缓解。3)用同位素~(125)I标记D-S,研究了口服,静注D-S在小白鼠体内的代谢情况。试验得到了D-S经静注,口服二种途径在小白鼠体内血、肝、肾、脾等主要脏器中的经时代谢曲线。六小时后D-S大部分代谢出体外,12天后全部代谢出体外。并进而得到了二种不同给药方式的药物代谢动力学方程。D-S口服为:C_血=0.1 (e~(-0.00183t)-e~(-0.01t))符合于一级吸收过程的单室模型 D-S静注为:C_血=0.384 e~(-0.645t) + 0.074 e~(-0.08t) + 0.042~(-0.00464t)符合于快速静注下的三室模型。4)采用~(203)Hg做了D-S口服、静注给药时对Hg~(++)的促排作用的实验,得到了二种给药方式下Hg~(++) 在小白鼠血、肝、肾、脑及全身的促排代谢经时曲线。实验表明D-S对汞有明显促排作用,其中口报组效果更好。D-S促排与代谢同位素示踪试验数据之间表现了有趣的相关性,有助于我们解释D-S对汞促排的机制。动物实验表明:D-S可能成为一种临床使用的副作用小的汞中毒解毒促排新药。
Resumo:
本文利用活性碳吸附蔗糖后再与巯基乙酸反应合成了一种新的分离吸附剂-巯基活性碳吸附剂,详细研究了其各种制备条件。实验表明,用这种方法合成的吸附剂是一种非常好的固体吸附剂,不仅能定量吸附各种重金属离子,而且具有很好的吸附脱附特性,其饱和吸附量是目前广泛应用的巯基绵的3~20倍。既克服了因巯基含量高对重金属离子难以洗脱的缺点,又大大提高了分离富集效率。探讨了巯基活性碳吸附剂中吸附因素对吸附能力的贡献,其中活性碳作用占17.3%,蔗糠作用占19.2%,巯基化后引入的吸附作用占63.5%。此三方面相互渗透,相互补充,相互加强,共同完成对重金属子离子的吸附作用。本文还从热力学和动力学两个方面研究了吸附剂对重金属离子的吸附机理。结果表明其吸附过程以化学吸附为主。外表面、内表面吸附率对Cu~(2+)分别为19%;81%;对Pb~(2+)分别为6%,94%,对Zn~(2+)分别为17%和83%,而吸附Cd~(2+)完全由内扩散所控制。并且发现其吸附Cu~(2+)的同时,还将其还原成Cu~o。从静态和动态两个方面探讨了溶液酸度、温度、吸附时间、Ca~(2+)、Na~+等干扰离子,以及重金属离子浓度等对新型分离吸附剂吸附能力的影响。结果表明,此吸附剂具有很高的吸附能力和很好的稳定性,可以应用于实际样品的测定。通过用表面有机合成法将巯基键合在玻碳电极的表面,得到了巯基修饰电极(MAMGCE),此种修饰电极与未加修饰的玻碳电极(GCE)相比,不仅可化学吸附重金属离子如汞离子,而且灵敏度提高了近10倍。当富集时间为3分钟时,其线性范围为1X_(10~(-8))mol/L~1X_(10~(-9))mol/L,相对标准偏差为7.7%。采用电子能谱等方法对MAMGCE电化学性质、电极反应机理进行了探讨,结果表明MAMGCE与Hg~(2+)的反应的产物在氧化及还原状态都存在弱吸附。通过将巯基乙酸作为一种支持电解质将巯基固定在导电聚吡咯薄膜电极上,制得巯基-聚吡咯薄膜修饰电极,该修饰电极保持了巯基的螯合性能,并具有良好的稳定性。此种修饰电极对水溶液中的重金属离子具有很好的吸附作用,其灵敏度与未修饰玻碳电极相比,测汞离子时电沉积提高了三倍,化学吸附时提高了近5倍。对其吸附机理进行的初步探讨证明其对汞离子的吸附为不可逆的产物弱吸附。本文研究了聚苯胺薄膜化学修饰电极对巯基化合物氧化还原的促进作用,系统地探讨了不同聚合介质、酸度等对PAn薄膜化学修饰电极对巯基乙醇促进作用的影响。采用扫描电镜、电子能谱、交流阻抗及拉曼光谱等各种检测手段对这种促进作用进行了探讨,结果表明这种促进作用是对巯基乙醇在PAn薄膜表面的氧化还原过程的一种加强,而这种加强作用是通过-SH与PAn中的N以质子形式加成的。
Resumo:
采用模拟方法,研究了Hg、豆磺隆和呋喃丹对不同肥力草甸棕壤和黑土转化酶、脲酶、中性磷酸酶活性的影响及汞和2种农药之间对土壤酶活性的交互作用,并对不同温度条件下,汞、豆磺隆对土壤脲酶动力学参数的影响进行了研究,为建立重金属、农药污染土壤酶监测指标体系和土壤污染酶修复工作提供理论参考。 试验结果表明,几种酶对土壤汞污染的敏感性顺序为脲酶 > 转化酶 > 中性磷酸酶,有机质含量高的土壤对汞抑制土壤酶的效应缓冲能力普遍较强,HgCl2浓度与脲酶和转化酶活性之间的关系均可用对数方程均可很好的描述,由于脲酶对汞的敏感性较强,可在一定程度上表征汞的污染程度,在建立土壤汞污染酶监测方法体系的领域,具有一定的研究潜力;而2种农药对3种土壤酶活性的影响较小,规律性较差,总体来说,豆磺隆对土壤脲酶有激活作用,对转化酶和土壤中性磷酸酶活性表现出抑制作用;呋喃丹对3种酶均有微弱的激活作用。 汞和豆磺隆或呋喃丹之间对土壤转化酶、脲酶、中性磷酸酶多数情况下均存在不同程度的交互作用,既有降低两种污染物毒性的拮抗作用,也有增强毒性的协同作用,因土壤类型、土壤肥力、污染物浓度和酶种类不同而存在差异。 除个别土样外,Hg浓度与脲酶动力学参数Km和Vmax和Vmax /Km值之间均呈显著(P < 0.05)或极显著(P < 0.01)负相关,这一现象符合典型的反竞争性抑制类型;豆磺隆对脲酶的激活效应很可能是由于其促进酶促反应初速度的提高引起的;Hg、豆磺隆同时添加对脲酶动力学参数Km、Vmax和Vmax /Km值的影响与单一添加Hg条件下相似,但由于豆磺隆的加入使规律性趋于复杂。 本试验温度范围内,对于汞污染,土壤对脲酶的保护能力随温度升高而有所下降;而对于豆磺隆单一污染、汞和豆磺隆复合污染污染,污染物对脲酶动力学参数的影响与温度之间没有显著关系。
Resumo:
本研究针对川西北高山草甸缺乏科学管理,过度放牧导致草场退化,并由此引发的一系列生态环境问题,选取红原县瓦切乡1996 年草地承包后形成的四个放牧强度草场,即不放牧、轻度(1.2 头牦牛hm-1)、中度(2.0 头牦牛hm-1)和重度放牧(2.9 头牦牛hm-1),作为研究对象,研究了不同放牧强度对草地植物-土壤系统中碳、氮这两个最基本物质的分布格局和循环过程的影响,并探讨了放牧干扰下高山草甸生态系统的管理。 1.放牧对草地植物群落物种组成,尤其是优势种,产生了明显的影响。不放牧、轻度、中度和重度放牧草地群落物种数分别为22,23,26,20 种,群落盖度分别是不放牧96.2%>中度93.6%>轻度89.7%>重度73.6%。随放牧强度的增加, 原植物群落中的优势种垂穗鹅冠草( Roegneria nutans )、发草(Deschampsia caespitosa)和垂穗披碱草(Elymus nutans)等禾草逐渐被莎草科的川嵩草(Kobresia setchwanensis)和高山嵩草(Kobresia pygmaea)所取代成为优势种。同时,随放牧强度的增加,高原毛茛(Ranunculus brotherusii)、狼毒(Stellera chamaejasme)、鹅绒委陵菜(Potentilla anserina)和车前(Plantagodepressa)等杂类草的数量也随之增加。 2.生长季6~9 月份,草地植物地上和地下生物量(0~30cm)都是从6 月份开始增长,8 月份达到最高值,9 月份开始下降。每个月份,通常地上生物量以不放牧为最高,重度放牧总是显著小于不放牧;地下生物量随放牧强度的增加表现为增加的趋势,通常重度和中度放牧显著高于不放牧和轻度放牧草地。不放牧、轻度、中度和重度放牧草地6~9 月份4 个月的植物总生物量平均值分别是1543、1622、2295 和2449 g m-2,但随放牧强度的增加越来越来多的生物量被分配到了地下部分,地下生物量占总生物量比例的大小顺序分别是重度88%>中度82%>轻度76%>不放牧69%。生物量这种变化主要是由于放牧使得群落优势种发生改变而引起的,其分配比例的变化体现了草地植物对放牧干扰的适应策略。 3.植物碳氮贮量的季节变化类似与生物量的变化。每个月份,不同放牧强度间植物地上碳氮的贮量有所不同,一般重度放牧会显著减少植物地上碳氮贮量。植物根系(0~30cm)碳氮贮量随放牧强度的增加表现为增加的趋势,通常重度和中度放牧显著高于不放牧和轻度放牧草地。不放牧、轻度、中度和重度放牧草地6~9 月份4 个月的植物总碳平均值分别是547、586、847 和909 g m-2,根系碳贮量占植物总碳的比例大小顺序分别是重度88%>中度82%>轻度76%>不放牧69%;放牧、轻度、中度和重度放牧草地6~9 月份4 个月的植物总氮平均值分别是17、17、23 和26 g m-2,根系氮贮量占植物总氮的比例大小顺序分别是重度79%>轻度71%>中度70%>不放牧65%。 4. 土壤有机碳贮量(0~30cm)的季节变化表现为7 月份略有下降,8 月开始增加,9 月份达到的最大值。土壤氮贮量的季节变化表现为随季节的推移逐渐增加的趋势。增加的放牧强度不同程度的增加土壤有机碳氮的贮量。不放牧、轻度、中度和重度放牧6~9 月份4 个月的土壤有机碳贮量的平均值分别是9.72、10.36、10.62 和11.74 kg m-2,土壤氮贮量分别为1.45、1.56、1.66 和1.83 kg m-2。土壤中有机碳(氮)的贮量都占到了植物-土壤系统有机碳(氮)的90%以上,但不同放牧强度之间的差异不明显。 5. 土壤氮的总硝化和反硝化,温室气体N2O 和CO2 的释放率的季节变化表现为从6 月份开始增加,7 月份达到最大值,8 月份开始下降,9 月份降为最小值。增加的放牧强度趋向于增加土壤氮的总硝化和反硝化作用,温室气体N2O和CO2 的释放率,通常情况下,中度放牧和重度放牧显著地加强了这些过程。 6.垂穗鹅冠草(Roegneria nutans)和川嵩草(Kobresia setchwanensis)凋落物在不同放牧强度下经过1 年的分解,两种凋落物的失重率及其碳氮的损失率3都随放牧增加表现为增加的趋势。在同一放牧强度下,川嵩草凋落物的失重率和碳氮的损失率都高于垂穗鹅冠草凋落物。 7. 尽管重度放牧显著增加了土壤碳氮的贮量,但同时也显著降低了植被群落盖度,降低了植物地上生物量,因此,久而久之会减少植物向土壤中的碳氮归还率;与不放牧和轻度放牧相比,重度放牧又显著增加了土壤CO2 和NO2 的排放量,这是草地生态系统碳氮损失的重要途径。由此可见,对于这些地处青藏高原的非常脆弱的高山草甸生态系统,长期重度放牧不仅导致植物生产力降低,而且将导致草地生态系统退化,甚至造成土壤中碳氮含量减少。 Long-term overgrazing has resulted in considerable deterioration in alpine meadowof the northwest Sichan Province. In order to explore management strategies for thesustainability of these alpine meadows, we selected four grasslands with differentgrazing intensity (no grazing-NG: 0, light grazing-LG: 1.2, moderate grazing-MG: 2.0,and heavy grazing-HG: 2.9 yaks ha-1) to evaluate carbon, nitrogen pools and cyclingprocesses within the plant-soil system in Waqie Village, Hongyuan County, Sichuan Province. 1. Grazing obviously changed the plant species composition, especially ondominant plant species. Total number of species is 22, 23, 26, and 20 for NG, LG, MGand HG, respectively. Vegetation coverage under different grazing intensity ranked inthe order of 96.2% for HG>93.6% for MG>89.7% for LG>73.6% for NG. Thedominator of HG community shifted from grasses-Roegneria nutans andDeschampsia caespitosa dominated in the NG and LG sites into sedges-Kobresiapygmaea and K. setchwanensis. At the same time, with the increase of grazingintensity, the numbers of forbs, such as Ranunculus brotherusii, Stellera chamaejasme,Potentilla anserine and Plantago depressa, increased with grazing intensity. 2. Over the growing season, aboveground and belowground biomass showed a 5single peak pattern with the highest biomass in August. For each month, abovegroundbiomass usually was the highest in the NG site and lowest in the HG site.Belowground biomass showed a trend of increase as grazing intensity increased and itwas significantly higher in the HG and MG site than in the NG and LG sites. Totalplant biomass averaged over the growing season is 1543, 1622, 2295 and 2449 g m-2for NG, LG, MG and HG, respectively. The proportion of biomass to total plantbiomass for NG, LG, MG and HG is 88%, 82%, 76% and 69%, respectively. Higherallocation ratio for is an adaptive response of plant to grazing. 3. Carbon and nitrogen storage in plant components followed the similar seasonalpatterns as their biomass under different grazing intensities. Generally, heavy grazingsignificantly decreases aboveground biomass carbon and nitrogen compared to nograzing. Carbon and nitrogen storage in root tended to increase as grazing increasedand they are significantly higher in the HG and MG sites compared to the LG and NGsite. Total Carbon storage in plant system averaged over the growing season is 547,586, 847 and 909 g m-2 for NG, LG, MG and HG, respectively, while 17, 17, 23 and 26g m-2 for nitrogen. The proportion of carbon storage in root to total plant carbon forNG, LG, MG and HG is 88%, 82%, 76%, 69%, respectively, while 65%, 71%, 70%and 79% for nitrogen. 4. Carbon storage in soil (0-30cm) decreased slightly in July, then increased inAugust and peaked in September. Nitrogen storage in soil tended to increase withseason and grazing intensity. Total Carbon storage in soil averaged over the growingseason is 9.72, 10.36, 10.62 and11.74 kg m-2 for NG, LG, MG and HG, respectively,while 1.45, 1.56, 1.66 and 1.83 for nitrogen. The proportion of carbon (nitrogen)storage in soil to plant-soil system carbon (nitrogen) storage for NG, LG, MG and HGis more than 90%, which is not markedly different among different grazing intensities. 5. Gross nitrification, denitrification, CO2 and N2O flux rates in soil increasedfrom June to July and then declined until September, all of which tended to increasewith the increase of grazing intensity. Generally, heavy and moderate grazing intensitysignificantly enhanced these process compared to no and light grazing intensity. 6. After decomposing in situ for a year, relative weight, carbon and nitrogen loss in the litter of Roegneria nutans and Kobresia setchwanensis tended to increase asgrazing intensity increased. Under the same grazing intensity, relative weight, carbonand nitrogen loss in the litter of Kobresia setchwanensis were higher than these in thelitter of Roegneria nutans. 7. Although heavy grazing intensity resulted in higher levels of carbon andnitrogen in plant and soil, it decreased vegetation coverage and aboveground biomass,which are undesirable for livestock production and sustainable grassland development.What is more, heavy grazing could also introduce potential carbon and nitrogen lossvia increasing CO2 and N2O emission into the atmosphere. Grazing at moderateintensity resulted in a plant community dominated by forage grasses with highaboveground biomass productivity and N content. The alpine meadow ecosystems inTibetan Plateau are very fragile and evolve under increasing grazing intensity by largeherbivores; therefore, deterioration of the plant-soil system, and possible declines insoil C and N, are potential without proper management in the future.
Resumo:
通过在密闭的培养箱中一次性通入不同体积浓度的SO2气体,研究了小麦幼苗超氧自由基O-·2含量和3种抗氧化酶活性的变化,探讨了信号分子水杨酸、乙烯和过氧化氢对SO2氧化胁迫的调节作用.结果表明,当通入10和40μl·L-1SO2时,小麦叶片中O-·2含量递增,过氧化物酶(POD)和过氧化氢酶(CAT)活性增强,但超氧化物歧化酶(SOD)活性降低.当SO2浓度达到50μl·L-1时,POD和CAT活性也开始降低,此时叶片尖端出现坏死,叶片绿色部位滋生大量真菌.用1mmol·L-1水杨酸(SA)(pH6.5)浸泡小麦干种子6h,或用10mmol·L-1H2O2浸泡幼苗,O-·2含量低于对照植株,而3种酶的活性高于对照植株,均可有效地减轻SO2的氧化胁迫.在SO2熏蒸下,乙烯显著抑制3种酶的活力,提高O-·2的形成速率.SA与乙烯同时使用时,SA几乎完全消除了乙烯的负面作用.
Resumo:
利用室内模拟方法,研究了重金属Hg对不同土样脲酶、转化酶和中性磷酸酶活性的影响.结果表明,Hg可显著地抑制土壤脲酶和转化酶的活性,但不同土样Hg对两种酶活性的抑制程度有很大差别.HgCl2浓度与两种酶活性之间的关系均可用对数方程很好地描述(P<0.05).4个土样的脲酶ED50(生态剂量)分别为87.99、5.47、24.05和19.88mg.kg-1;转化酶的ED50分别为76.68、727.49、236.52和316.59mg.kg-1.脲酶对Hg污染比转化酶敏感;有机质对土壤酶活性有一定的保护作用.除连续2年施用大量有机肥的草甸棕壤土样中Hg对中性磷酸酶有显著的激活作用外(P<0.05),其它土样无显著变化,表明中性磷酸酶活性对Hg污染反应不敏感.
Resumo:
通过模拟方法研究了豆磺隆,呋喃丹2种农药与重金属汞(Hg)单一及复合污染对草甸棕壤和黑土4个土壤转化酶活性的影响.结果显示,在试验浓度范围内,土壤添加豆磺隆和呋喃丹后,转化酶变化幅度分别为-12%~7%和-6%~7%,表明2种农药对土壤转化酶的毒性较小;Hg对转化酶最大抑制率为22%~35%,二者之间呈显著的对数负相关关系,表明Hg对转化酶的毒性较大,转化酶在一定程度上可作为Hg污染的监测指标,通过对数方程计算出4个土样的生态剂量(ED50)分别为76.68,727.49,236.52,316.59mg/kg;Hg和2种农药之间普遍存在交互作用,豆磺隆与Hg复合污染引起土壤转化酶最大净变化量(?I)为对照的-12%~15%,呋喃丹和Hg为-25%~-6%,有机质对复合污染产生的毒性有明显的缓冲作用.