65 resultados para Grain boundary sliding


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a variational method, a general three-dimensional solution to the problem of a sliding spherical inclusion embedded in an infinite anisotropic medium is presented in this paper. The inclusion itself is also a general anisotropic elastic medium. The interface is treated as a thin interface layer with interphase anisotropic properties. The displacements in the matrix and the inclusion are expressed as polynomial series of the cartesian coordinate components. Using the virtual work principle, a set of linear algebraic equations about unknown coefficients are obtained. Then the general sliding spherical inclusion problem is accurately solved. Based on this solution, a self-consistent method for sliding polycrystals is proposed. Combining this with a two-dimensional model of an aggregate polycrystal, a systematic analysis of the mechanical behaviour of sliding polycrystals is given in detail. Numerical results are given to show the significant effect of grain boundary sliding on the overall mechanical properties of aggregate polycrystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The temperature behaviour of an Al bicrystal with surfaces consisting of (110) and (111) crystals is simulated using molecular dynamics. The result shows that the (110) crystal losses its crystalline order at 820K, whereas the disorder does not propagate through the (111) crystal at this temperature. Instead, some disordered atoms are recrystallized into the (111) crystal and the initial grain boundary changes into a stable order-disorder interface. Thus, it was discovered that at a temperature near its melting point, the (111) crystal grew and obstructed the propagation of disorder. Such an obstruction is helpful for understanding melting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline (nc) materials are characterized by a typical grain size of 1-100nm. The uniaxial tensile deformation of computer-generated nc samples, with several average grain sizes ranging from 5.38 to 1.79nm, is simulated by using molecular dynamics with the Finnis-Sinclair potential. The influence of grain size and temperature on the mechanical deformation is studied in this paper. The simulated nc samples show a reverse Hall-Petch effect. Grain boundary sliding and motion, as well as grain rotation are mainly responsible for the plastic deformation. At low temperatures, partial dislocation activities play a minor role during the deformation. This role begins to occur at the strain of 5%, and is progressively remarkable with increasing average grain size. However, at elevated temperatures no dislocation activity is detected, and the diffusion of grain boundaries may come into play.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metallic nanowires have many attractive properties such as ultra-high yield strength and large tensile elongation. However, recent experiments show that metallic nanowires often contain grain boundaries, which are expected to significantly affect mechanical properties. By using molecular dynamics simulations, here, we demonstrate that polycrystalline Cu nanowires exhibit tensile deformation behavior distinctly different from their single-crystal counterparts. A significantly lowered yield strength was observed as a result of dislocation emission from grain boundaries rather than from free surfaces, despite of the very high surface to volume ratio. Necking starts from the grain boundary followed by fracture, resulting in reduced tensile ductility. The high stresses found in the grain boundary region clearly play a dominant role in controlling both inelastic deformation and fracture processes in nanoscale objects. These findings have implications for designing stronger and more ductile structures and devices on nanoscale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By combining grain boundary (GB) and its influence zone, a micromechanic model for polycrystal is established for considering the influence of GB. By using the crystal plasticity theory and the finite element method for finite deformation, numerical simulation is carried out by the model. Calculated results display the microscopic characteristic of deformation fields of grains and are in qualitative agreement with experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crack growth due to cavity growth and coalescence along grain boundaries is analyzed under transient and extensive creep conditions in a compact tension specimen. Account is taken of the finite geometry changes accompanying crack tip blunting. The material is characterized as an elastic-power law creeping solid with an additional contribution to the creep rate arising from a given density of cavitating grain boundary facets. All voids are assumed present from the outset and distributed on a given density of cavitating grain boundary facets. The evolution of the stress fields with crack growth under three load histories is described in some detail for a relatively ductile material. The full-field plane strain finite element calculations show the competing effects of stress relaxation due to constrained creep, diffusion and crack tip blunting. and of stress increase due to the instantaneous elastic response to crack growth. At very high crack growth rates the Hui-Riedel fields dominate the crack tip region. However. the high growth rates are not sustained for any length of time in the compact tension geometry analyzed. The region of dominance of the Hui-Riedel field shrinks rapidly so that the near-tip fields are controlled by the HRR-type field shortly after the onset of crack growth. Crack growth rates under various conditions of loading and spanning the range of times from small scale creep to extensive creep are obtained. We show that there is a strong similarity between crack growth history and the behaviour of the C(t) and C(t) parameters. so that crack growth rates correlate rather well with C(t) and C(t). A relatively brittle material is also considered that has a very different near-tip stress field and crack growth history.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most deformation twins in nanocrystalline face-centered cubic fcc metals have been observed to form from grain boundaries. The growth of such twins requires the emission of Shockley partials from the grain boundary on successive slip planes. However, it is statistically improbable for a partial to exist on every slip plane. Here we propose a dislocation reaction and cross-slip mechanism on the grain boundary that would supply a partial on every successive slip plane for twin growth.This mechanism can also produce a twin with macrostrain smaller than that caused by a conventional twin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray reflectivity curves show bi-crystal (twin) characteristics. Defect segregations at the twin boundary can be seen, whereas stress is relaxed at the edge of the boundary. Relaxation of the stress resulted in the formation of twins and other defects. As a result of the formation of such defects, a defect-free and stress-free zone or low defect density and small stress zone is created around the defects. Stress, chemical stoichiometry deviation and non-homogeneous distribution of impurities are the key factors that cause twins in LEC InP crystal growth. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimentally observed X-ray reflectivity curves show bi-crystal(twin) characteristics. The study revealed that there was defect segregation at the twin boundary. Stress was relaxed at the edge of the boundary. Relaxation of the stress resulted in formation of twin and other defects. As a result of formation of such defects, a defect-free and stress-free zone or low defect density and small stress zone is created around the defects. So a twin model was proposed to explain the experimental results. Stress(mainly thermal stress), chemical stoichiometry deviation and impurities nonhomogeneous distributions are the key factors that cause twins in LEC InP crystal growth. Twins on (111) face in LEC InP crystal were studied. Experimental evidence of above mentioned twin model and suggestions on how to get twin-free LEC InP single crystals will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The grain boundary is an interface and the surface tension is one of its important thermodynamic properties. In this paper, the surface tension of the ∑9 grain boundary for α-Fe at various temperatures and pressures is calculated by means of Computer Molecular Dynamics (CMD). The results agree satisfactorily with the experimental data. It is shown that the contribution of entropy to surface tension of grain boundary can be ignored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, nanocrystalline Ni (nc-Ni) with a broad grain size distribution (BGSD) of 5-120 nm and an average grain size of 27.2 nm was prepared. The BGSD nc-Ni sample shows a similar strength and good ductility in comparison with electrodeposited nc-Ni with a narrow grain size distribution. The intracrystalline dislocation network was observed in the post-deformed microstructure confirming the conventional intracrystalline dislocation sliding mechanism in BGSD nc-Ni. The uniaxial tensile loading-unloading-loading deformation shows BGSD nc-Ni has the capability to store dislocations in the grain interior, which is very limited compared with that of coarse grained metals. For BGSD nc-Ni, the strain rate sensitivity of flow stress m enhances with decreasing strain rate. At the strain rate of 5 x 10(-6) s(-1), m was estimated to be 0.055. At the corresponding strain rate, the enhanced ductility along with the decreased strength was achievable, indicating activation of other deformation mechanisms, e. g. grain boundary sliding or diffusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Material formulated as Ce5.2Sm0.8-xPrxMo15-(delta) (x=0.08) was prepared by adding small amounts of Pr dopant in oxide Ce5.2SM0.8-xPrxMoO15-delta. Structural and electrical properties were investigated by means of X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM) and AC impedance spectroscopy. The effect of small amounts of Pr on microstructure and electrical conductivity was discussed. It was showed that the material doped with Pr has a lot of dents and small openings, which provide channels for oxygen ions, resulting in lower grain boundary and total conductivity activation energy. Thus the corresponding grain boundary conductivity and total conductivity of the material were improved notably. The grain boundary conductivity of the material doped with Pr is 6.79 X 10(-3) S center dot cm(-1) at 500 degrees C, which is twice as large as that without Pr (5.61 X 10(-5) S center dot cm(-1)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid solutions of Ce1-xNdxO2-x/2 (0.05 <= x <= 0.2) and (Ce1-xNdx)(0.95)MO0.05O2-delta (0.05 <= x <= 0.2) have been synthesized by a modified sol-gel method. Both materials have very low content of SiO2 (similar to 27 ppm). Their structures and ionic conductivities were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and electrochemical impedance spectroscopy (M). The XRD patterns indicate that these materials are single phases with a cubic fluorite structure. The powders calcined at 300 degrees C with a crystal size of 5.7 nm have good sinterability, and the relative density could reach above 96% after being sintered at 1450 degrees C. With the addition Of MoO3, the sintering temperature could be decreased to 1250 degrees C. Impedance spectroscopy measurement in the temperature range of 250-800 degrees C indicates that a sharp increase of conductivity is observed when a small amount of Nd2O3 is added into ceria, of which Ce0.85Nd0.15O1.925 (15NDC) shows the highest conductivity. With the addition of a small amount Of MoO3, the grain boundary conductivity of 15NDC at 600 degrees C increases from 2.56 S m(-1) to 5.62 S m(-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stress-strain relations of nanocrystalline twin copper with variously sized grains and twins are studied by using FEM simulations based on the conventional theory of mechanism-based strain gradient plasticity (CMSG). A model of twin lamellae strengthening zone is proposed and a cohesive interface model is used to simulate grain-boundary sliding and separation. Effects of material parameters on stress-strain curves of polycrystalline twin copper are studied in detail. Furthermore, the effects of both twin lamellar spacing and twin lamellar distribution on the stress-strain relations are investigated under tension loading. The numerical simulations show that both the strain gradient effect and the material hardening increase with decreasing the grain size and twin lamellar spacing. The distribution of twin lamellae has a significant influence on the overall mechanical properties, and the effect is reduced as both the grain size and twin lamellar spacing decrease. Finally, the FEM prediction results are compared with the experimental data.