57 resultados para Functional materials
Resumo:
The deep centers of high electron mobility transistor (HEMT) and pseudomorphic-HEMT (P-HEMT) functional materials of ultra-high-speed microstructures grown by MBE are investigated using deep level transient spectroscopy (DLTS) technique. DLTS spectra demonstrate that midgap states, having larger concentrations and capture cross sections, are measured in n-AlGaAs layers of HEMT and P-HEMT structures. These states may correlate strongly with oxygen content of n-AlGaAs layer. At the same time, one can observe that the movement of DX center is related to silicon impurity that is induced by the strain in AlGaAs layer of the mismatched AlGaAs/InGaAs/GaAs system of P-HEMT structure. The experimental results also show that DLTS technique may be a tool of optimization design of the practical devices.
Resumo:
纳米孔结构金属多孔材料(以下简称金属纳米多孔材料)是近年来纳米技术及多孔材料科学领域引人注目的研究对象。本文综述了近年来金属纳米多孔材料的制备方法(粉末烧结法、脱合金法、胶晶模板法、斜入射沉积法等)、表征技术、应用现状以及最新的研究成果。指出了金属纳米多孔材料研究进程中存在的主要问题、发展前景及今后的研究方向。
Resumo:
Five-micron thick freestanding Si cantilevers were fabricated on bulk Si (1 1 1) substrates with surface/bulk micromachining (SBM) process. Then 1-mu m thick GaN layers were deposited on the Si cantilevers by metal-organic chemical vapor deposition (MOCVD). Epilayers on cantilever areas were obtained crack-free, and the photoluminescence (PL) spectra verified the stress reduction and better material quality in these suspended parts of GaN. Back sides of the cantilevers were also covered with GaN layers, which prevented the composite beams from bending dramatically. This paper had proved the feasibility of integrating high-quality GaN epilayers with Si micromechanical structures to realize GaN-based micro electro-mechanical system (MEMS). (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Quasi-aligned Eu2+-doped wurtzite ZnS nanowires on Au-coated Si wafers have been successfully synthesized by a vapor deposition method under a weakly reducing atmosphere. Compared with the undoped counterpart, incorporation of the dopant gives a modulated composition and crystal structure, which leads to a preferred growth of the nanowires along the [0110] direction and a high density of defects in the nanowire hosts. The ion doping causes intense fluorescence and persistent phosphorescence in ZnS nanowires. The dopant Eu2+ ions form an isoelectronic acceptor level and yield a high density of bound excitions, which contribute to the appearance of the radiative recombination emission of the bound excitons and resonant Raman scattering at higher pumping intensity. Co-dopant Cl- ions can serve not only as donors, producing a donor-acceptor pair transition with the Eu2+ acceptor level, but can also form trap levels together with other defects, capture the photoionization electrons of Eu2+, and yield long-lasting (about 4 min), green phosphorescence. With decreasing synthesis time, the existence of more surface states in the nanowires forms a higher density of trap centers and changes the crystal-field strength around Eu2+. As a result, not only have an enhanced Eu2+ -4f(6)5d(1)-4f(7) intra-ion transition and a prolonged afterglow time been more effectively observed (by decreasing the nanowires' diameters), but also the Eu2+ related emissions are shifted to shorter wavelengths.
Resumo:
Graphite, inexpensive and available in large quantities, unfortunately does not readily exfoliate to yield individual graphene sheets. Here a mild, one-step electrochemical approach for the preparation of ionic-liquid-functionalized graphite sheets with the assistance of an ionic liquid and water is presented. These ionic-liquid-treated graphite sheets can be exfoliated into functionalized graphene nanosheets that can not only be individuated and homogeneously distributed into polar aprotic solvents, but also need not be further deoxidized. Different types of ionic liquids and different ratios of the ionic liquid to water can influence the properties of the graphene nanosheets. Graphene nanosheet/polystyrene composites synthesized by a liquid-phase blend route exhibit a percolation threshold of 0.1 vol % for room temperature electrical conductivity, and, at only 4.19 vol %, this composite has a conductivity of 13.84 S m(-1), which is 3-15 times that of polystyrene composites filled with single-walled carbon nanotubes.
Resumo:
By attaching a bulky, inductively electron-with drawing trifluoromethyl (CF3) group on the pyridyl ring of the rigid 2-[3(N-phenylcarbazolyl)]pyridine cyclometalated ligand, we successfully synthesized a new heteroleptic orange-emitting phosphorescent iridium(III) complex [Ir(L-1)(2)(acac)] 1 (HL1=5-trifluoromethyl-2-[3-(N-phenylcarbazolyl)]pyridine, Hacac = acetylacetone) in good yield.
Resumo:
A new and synthetically versatile strategy has been developed for the phosphorescence color tuning of cyclometalated iridium phosphors by simple tailoring of the phenyl ring of ppy (Hppy=2-phenylpyridine) with various main-group moieties in [Ir(ppy-X)(2)(acac)] (X=B(Mes)(2), SiPh3, GePh3, NPh2, POPh2, OPh, SPh, SO2Ph). This can be achieved by shifting the charge-transfer character from the pyridyl groups in some traditional iridium ppy-type complexes to the electron-withdrawing main-group moieties and these assignments were supported by theoretical calculations.
Resumo:
The synthesis, structures, photophysics, electrochemistry and electrophosphorescent properties of new red phosphorescent cyclometalated iridium(III) isoquinoline complexes, bearing 9-arylcarbazolyl chromophores, are reported. The functional properties of these red phosphors correlate well with the results of density functional theory calculations
Resumo:
The synthesis, structures, photophysics, electrochemistry and electrophosphorescent properties of new red phosphorescent cyclometalated iridium(III) isoquinoline complexes, bearing 9-arylcarbazolyl chromophores, are reported. The functional properties of these red phosphors correlate well with the results of density functional theory calculations. The highest occupied molecular orbital levels of these complexes are raised by the integration of a carbazole unit to the iridium isoquinoline core so that the hole-transporting ability is improved in the resulting complexes relative to those with I-phenylisoquinoline ligands. All of the complexes are highly thermally stable and emit an intense red light at room temperature with relatively short lifetimes that are beneficial for highly efficient organic light-emitting diodes (OLEDs).
Resumo:
The ethylenediamine trimolybdate (ENTMo) can show unusually photochromic and thermochromic properties and there exists in the difference of chromic mechanisms, which has been proved in our previous work [I]. In this paper, X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and laser Raman spectroscopy (LRS) of the colored samples are characterized and analyzed in detail. The crystal structure, the inorganic skeleton and the microenvironment of center ions of the colored samples do not substantively change except distortion. The color difference of the photochromic and the thermochromic samples is discussed and that the difference of reduction sites result in their different chromic mechanisms is suggested.
Resumo:
Rectangular AgIn(WO4)(2) nanotubes with a diameter range of 80 to 120 nm and length up to 2 mu m have been synthesized by a hydrothermal method. These nanotubes exhibit interesting white light emissions when using 320 nm as the excitation wavelength. A photocatalytic reaction for water decomposition to evolve K, was performed under UV irradiation, and the rate of H, evolution is nearly seven times that of the sample prepared by a solid-state reaction, which shows much higher photocatalytic activities compared with their bulk counterparts.
Resumo:
Noble metal composite nanoparticles, as attractive building blocks of advanced functional materials, have received enormous attentions due to their specific optical, electronic and catalytic properties that are distant from those of the corresponding monometal nanoparticles. Such materials have important applications in such areas as sensors, optical materials, catalysis and biology, and developed into an increasingly important research area in nanomaterials science. This article reviews the recent progress in the synthesis, properties, and applications of noble metal composite nanoparticles with core-shell, heterostructure, and alloy structure.