81 resultados para Force Distribution
Resumo:
The lift force on a spherical nanoparticle near a wall in micro/nanofluidics has not received
sufficient attention so far. In this letter the concentration of 200 nm particles is measured at
0.25–2.0 m to a wall in a microchannel with pressure-driven de-ionized water flow pressure
gradient 0–2000 kPa/m . The measured data show the influence of the lift force on the nanoparticle
concentration distribution. By introducing the Saffman lift force into the Nernst–Planck equation
near a wall, we find that the lift force is dominant at the range of 2
Resumo:
In this paper, the possible error sources of the composite natural frequencies due to modeling the shape memory alloy (SMA) wire as an axial force or an elastic foundation and anisotropy are discussed. The great benefit of modeling the SMA wire as an axial force and an elastic foundation is that the complex constitutive relation of SMA can be avoided. But as the SMA wire and graphite-epoxy are rigidly bonded together, such constraint causes the re-distribution of the stress in the composite. This, together with anisotropy, which also reduces the structural stiffness can cause the relatively large error between the experimental data and theoretical results.
Resumo:
The melt flow and temperature distribution in a 200 mm silicon Czochralski furnace with a cusp magnetic field was modeled and simulated by using a finite-volume based FLUTRAPP ( Fluid Flow and Transport Phenomena Program) code. The melt flow in the crucible was focused, which is a result of the competition of buoyancy, the centrifugal forces caused by the rotations of the crucible and crystal, the thermocapillary force on the free surfaces and the Lorentz force induced by the cusp magnetic field. The zonal method for radiative heat transfer was used in the growth chamber, which was confined by the crystal surface, melt surface, crucible, heat shield, and pull chamber. It was found that the cusp magnetic field could strength the dominant counter-rotating swirling flow cell in the crucible and reduce the flow oscillation and the pulling-rate fluctuation. The fluctuation of dopant and oxygen concentration in the growing crystal could thus be smoothed.
Resumo:
We studied the altitudinal ranging of one habituated group of black-crested gibbons (Nomascus concolor) at Dazhaizi, Mt. Wuliang, Yunnan, China, between March 2005 and April 2006. The group ranged from 1,900 to 2,680 m above sea level. Food distribution was the driving force behind the altitudinal ranging patterns of the study group. They spent 83.2% of their time ranging between 2,100 and 2,400 m, where 75.8% of important food patches occurred. They avoided using the area above 2,500 m despite a lack of human disturbance there, apparently because there were few food resources. Temperature had a limited effect on seasonal altitudinal ranging but probably explained the diel altitudinal ranging of the group, which tended to use the lower zone in the cold morning and the higher zone in the warm afternoon. Grazing goats, the main disturbance, were limited to below 2,100 m, which was defined as the high-disturbance area (HDA). Gibbons spent less time in the HDA and, when ranging there, spent more time feeding and travelling and less time resting and singing. Human activities directly influenced gibbon behaviour, might cause forest degradation and create dispersal barriers between populations. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
We develop a modified two-step method of growing high-density and narrow size-distribution InAs/GaAs quantum dots (QDs) by molecular beam epitaxy. In the first step, high-density small InAs QDs are formed by optimizing the continuous deposition amount. In the second step, deposition is carried out with a long growth interruption for every 0.1 InAs monolayer. Atomic force microscope images show that the high-density (similar to 5.9x 10(10) CM-2) good size-uniformity InAs QDs are achieved. The strong intensity and narrow linewidth (27.7 meV) of the photoluminescence spectrum show that the QDs grown in this two-step method have a good optical quality.
Resumo:
The effects of Si and Mg doping on the crystalline quality and In distribution in the InGaN films were studied by atomic force microscope (AFM), triple crystal X-ray diffraction (TCXRD) and Rutherford backscattering spectrometry (RBS). The undoped, Si-doped and Mg-doped InGaN films were grown by metalorganic chemical vapor deposition (MOCVD) on (0 0 0 1) sapphire substrates. The electronic concentration in the Si-doped InGaN is about 2 x 10(19) cm(-3). It is found that the crystalline quality and In distribution in InGaN is slightly affected by the Si doping. In the Mg doped-case, the hole concentration is about 4 x 10(18) cm(-3) after annealing treatment. The surface morphology and crystalline quality of the Mg-doped InGaN are deteriorated significantly compared with the undoped InGaN. The growth rate of Mg-doped InGaN is higher than the undoped InGaN. Mg doping enhances the In incorporation in the InGaN alloy. The increase in In composition in the growth direction is more severe than the undoped InGaN. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
InAs quantum dots (QDs) were grown on In0.15Ga0.85As strained layers by molecular beam epitaxy on GaAs (0 0 1) substrates. Atomic force microscopy and transmission electron microscopy study have indicated that In0.15Ga0.85As ridges and InAs QDs formed at the inclined upside of interface misfit dislocations (MDs). By testifying the MDs are mixed 60 degrees dislocations and calculating the surface stress over them when they are 12-180 nm below the surface, we found the QDs prefer nucleating on the side with tensile stress of the MDs and this explained why the ordering of QDs is weak when the InGaAs layer is relatively thick. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The pressure behaviour of In0.55Al0.45As/Al0.5Ga0.5As self-assembled quantum dots (QDs) has been studied at 15 K in the pressure range of 0-1.3 GPa. The atomic force microscopy image shows that the QDs have a multi-modal distribution in size. Three emission peaks were observed in the photoluminescence (PL) spectra, corresponding to the different QD families. The measured pressure coefficients are 82, 93 and 98 meV GPa(-1) for QDs with average lateral size of 26, 52 and 62 nm, respectively. The pressure coefficient of small QDs is about 17% smaller than that of bulk In0.55Al0.45As An envelope-function calculation was used to analyse the effect of pressure-induced change of barrier height, effective mass and dot size on the pressure coefficients of QDs. The Gamma-X state mixing was also included in the evaluation of the reduction of the pressure coefficients. The results indicate that both the pressure-induced increase of effective mass and Gamma-X mixing respond to the decrease of pressure coefficients, and the Gamma-X mixing is more important for small dots. The calculated Gamma-X interaction potentials are 15 and 10 meV for QDs with lateral size of 26 and 52 nm, respectively. A type-II alignment for the X conduction band is suggested according to the pressure dependence of the PL intensities. The valence-band offset was then estimated as 0.15 +/- 0.02.
Resumo:
Red-emitting at about 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy are demonstrated, A double-peak structure of photoluminescence (PL) spectra from quantum dots was observed, and a bimodal distribution of dot sizes was also confirmed by an atomic force micrograph (AFM) image for uncapped sample. From the temperature and excitation intensity dependence of PL spectra, it is found that the double-peak structure of PL spectra from quantum dots is strongly correlated to the two predominant quantum dot families. Taking into account the quantum-size effect on the peak energy, it is proposed that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical to the statistical distribution of dot lateral size from the AFM image.
Resumo:
Atomic force microscopy and photoluminescence spectroscopy (PL) has been used to study asymmetric bilayer InAs quantum dot (QD) structures grow by molecular-beam epitaxy on GaAs (001) substrates. The two InAs layers were separated by a 7-nm-thick GaAs spacer layer and were grown at different substrate temperature. We took advantage of the intrinsic nonuniformity of the molecular beams to grow the seed layer with an average InAs coverage of 2.0 ML. Then the seed layer thickness could be divided into three areas: below, around and above the critical thickness of the 2D-3D transition along the 11101 direction of the substrate. Correspondingly, the nucleation mechanisms of the upper InAs layer (UIL) could be also divided into three areas: temperature-controlled, competition between temperature-controlled and strain-induced, and strain-induced (template-controlled) nucleation. Small quantum dots (QDs) with a large density around 5 x 10(10) cm(-2) are found in the temperature-controlled nucleation area. The QD size distributions undergo a bimodal to a unimodal transition with decreasing QD densities in the strain-induced nucleation area, where the QD densities vary following that of the seed layer (templating effect). The optimum QD density with the UIL thickness fixed at 2.4 ML is shown to be around 1.5 x 10(10) cm(-2), for which the QD size distribution is unimodal and PL emission peaks at the longest wavelength. The QDs in the in-between area exhibit a broad size distribution with small QDs and strain-induced large QDs coexisting.
Resumo:
The size and distribution of surface features of porous silicon layers have been investigated by scanning tunneling and atomic force microscopy. Pores and hillocks down to 1-2 nm size were observed, with their shape and distribution on the sample surface being influenced by crystallographic effects. The local density of electronic states show a strong increase above 2 eV, in agreement with recent theoretical predictions.
Resumo:
P-type copper phthalocyanine (CuPc) and n-type hexadecafluorophthalocyanina-tocopper (F16CuPc) polycrystalline films were investigated by Kelvin probe force microscopy (KPFM). Topographic and corresponding surface potential images are obtained simultaneously. Surface potential images are related with the local work function of crystalline facets and potential barriers at the grain boundaries (GBs) in organic semiconductors. Based on the spatial distribution of surface potential at GBs, donor- and acceptor-like trapping states in the grain boundaries (GBs) of p-CuPc and n-F16CuPc films are confirmed respectively.
Resumo:
A novel sol-gel process has been developed for the synthesis of amorphous silica-aluminas with controlled mesopore distribution without the use of organic templating agents, e.g., surfactant molecules. Ultrasonic treatment during the synthesis enables production of precursor sols with narrow particle size distribution. Atomic force microscopy analysis shows that these sol particles are spherical in shape with a narrow size distribution (i.e., 13-25 nm) and their aggregation during the gelation creates clusters containing similar sized interparticle mesopores. A nitrogen physiadsorption study indicates that the mesoporous materials containing different Si/Al ratios prepared by the new synthesis method has a large specific surface area (i.e., 587-692 m(2)/g) and similar pore sizes of 2-11 nm. Solid-state Al-27 magic angle spinning (MAS) NMR shows that most of the aluminum is located in the tetrahedral position. A transmission electron microscopy (TEM) image shows that the mesoporous silica-alumina consists of 12-25 nm spheres. Additionally, high-resolution TEM and electron diffraction indicate that some nanoparticles are characteristic of a crystal, although X-ray diffraction and Si-29 MAS NMR analysis show an amorphous material.
Resumo:
Leukocytes roll along the endothelium of postcapillary venules in response to inflammatory and thrombotic processes. The rolling under hydrodynamic shear forces is a first step in directing leukocytes out of the blood stream into sites of inflammation and is mediated by the selectins, a family of extended, modular, and calcium-dependent lectin receptors. The interactions between P-, E-or L-selectins and their count.
Resumo:
The Peierls-Nabarro model of the interfacial misfit dislocation array is analytically extended to a family of dislocations of greater widths. By adjusting a parameter, the width of the misfit dislocations, the distribution of the shear stress, and the restoring force law can be systematically varied. The smaller the amplitude of the restoring force, the wider the misfit dislocations and the lower the interfacial energy.