124 resultados para Elastic Foundation
Resumo:
In this paper, the possible error sources of the composite natural frequencies due to modeling the shape memory alloy (SMA) wire as an axial force or an elastic foundation and anisotropy are discussed. The great benefit of modeling the SMA wire as an axial force and an elastic foundation is that the complex constitutive relation of SMA can be avoided. But as the SMA wire and graphite-epoxy are rigidly bonded together, such constraint causes the re-distribution of the stress in the composite. This, together with anisotropy, which also reduces the structural stiffness can cause the relatively large error between the experimental data and theoretical results.
Resumo:
Based on the dynamic governing equation of propagating buckle on a beam on a nonlinear elastic foundation, this paper deals with an important problem of buckle arrest by combining the FEM with a time integration technique. A new conclusion completely different from that by the quasi-static analysis about the buckle arrestor design is drawn. This shows that the inertia of the beam cannot be ignored in the analysis under consideration, especially when the buckle propagation is suddenly stopped by the arrestors.
Resumo:
The paper revisits a simple beam model used by Chater et al. (1983, Proc. IUTAM Symp. Collapse, Cambridge University Press) to examine the dynamics of propagating buckles on it. It was found that, if a buckle is initiated at a constant pressure higher than the propagation pressure of the model (P-p), the buckle accelerates and gradually reaches a constant velocity which depends upon the pressure, while if it is initiated at P-p, the buckle propagates at a velocity which depends upon the initial imperfection. The causes for the difference are also investigated.
Resumo:
In the present paper, a simple mechanical model is developed to predict the dynamic response of a cracked structure subjected to periodic excitation, which has been used to identify the physical mechanisms in leading the growth or arrest of cracking. The structure under consideration consists of a beam with a crack along the axis, and thus, the crack may open in Mode I and in the axial direction propagate when the beam vibrates. In this paper, the system is modeled as a cantilever beam lying on a partial elastic foundation, where the portion of the beam on the foundation represents the intact portion of the beam. Modal analysis is employed to obtain a closed form solution for the structural response. Crack propagation is studied by allowing the elastic foundation to shorten (mimicking crack growth) if a displacement criterion, based on the material toughness, is met. As the crack propagates, the structural model is updated using the new foundation length and the response continues. From this work, two mechanisms for crack arrest are identified. It is also shown that the crack propagation is strongly influenced by the transient response of the structure.
Resumo:
Effects of deposition layer position and number/density on local bending of a thin film are systematically investigated. Because the deposition layer interacts with the thin film at the interface and there is an offset between the thin film neutral surface and the interface, the deposition layer generates not only axial stress but also bending moment. The bending moment induces an instant out-of-plane deflection of the thin film, which may or may not cause the so-called local bending. The deposition layer is modeled as a local stressor, whose location and density are demonstrated to be vital to the occurrence of local bending. The thin film rests on a viscous layer, which is governed by the Navier-Stokes equation and behaves like an elastic foundation to exert transverse forces on the thin film. The unknown feature of the axial constraint force makes the governing equation highly nonlinear even for the small deflection case. The constraint force and film transverse deflection are solved iteratively through the governing equation and the displacement constraint equation of immovable edges. This research shows that in some special cases, the deposition density increase does not necessarily reduce the local bending. By comparing the thin film deflections of different deposition numbers and positions, we also present the guideline of strengthening or suppressing the local bending.
Resumo:
The Jinchuan Nickel Mine is the largest underground mine with cut-and-fill mining in China. It is very difficult to be exploited for very low safety stability of rock mass caused by complex geological conditions, developed faults, cracked rock mass and high stress. In this paper, the laws of rock mass movement、mechanics of shaft deformation and destroy were analyzed based on the collection of date, the detailed field engineering investigations, ground movement monitoring by GPS, theoretical analysis and numerical simulation. According to the GPS monitoring result of ground surface movement, there are different ground movement characteristics among the three Mine area of Jinchuan Nickel Mine. In No. 2 Mine area, the ground movement funnel with apparent asymmetry is developing, the influence scope is larger in the up faulted block than in the down faulted block, and the centre of ground movement is moving along the up faulted block direction with increasing depth of mining. Moreover, the tunnels in the corresponding area with the centre of ground movement are damaged seriously. In Longshou Mine area, the ground movement funnel is also developing, but the moving path and the nonlinear characters are more sophisticated because of the long-term effects of open excavating and the effects of underground mining together. In No. 3 Mine area, the underground mining impact on surface is not serious for the time of mining activity is not for long, but the ground movement funnel is also forming now. The underground mining has caused widespread land subsidence in Jinchuan Nickel Mine area, but the phenomena of surface raise appeared in some partial areas of Longshou Mine area and No. 3 Mine area. Analysis proved that the reason for the open pit bottom raise is the slope deformation activation caused by the excavation from open pit into underground mine; and that the raise of surface in No.3 Mine area is caused by the effect of elastic foundation due to underground mining. Although the GPS Monitoring results show the amount of subsidence is increasing constantly, the subsidence rate has a descending tendency with fluctuation in Jinchuan No. 2 Mine area. The subsidence rate curve is a time function and exists an extreme point, the rate increasing before extreme point and decreasing after the extreme point ,but the scale of decreasing rate will be very small after the rate decreasing up to a certain degree, moreover, the characteristics is different among different areas, which have some relation with the distance to the mining section and the dip of the ore body. ArcView is GIS software, which we adopted as a development platform, and made secondary development by its development language “avenue”, through which we developed a ground movement analysis and forecast System for Jinchuan Nickel Mine, which contain three modules : management of ground movement information; analysis and evaluation of ground movement; and ground movement forecast. In the module of evaluation, using the technique of MATLAB6.5 program with VB6.0, the system can achieve the ANN prediction model for GPS monitoring data, data preparation results analysis and model integrated was realized by Avenue programming. Finally, the author analyzed the mechanical of deformation and destroy of the No. 14 shaft, and its repair and artificial-support effectiveness also given detailed demonstration in various aspect. The result showed that the reason for the destroy of No. 14 shaft is underground mining, and being the case, the destroy of the shaft also has its special features, which mainly contains forked stress contour for mining steep ore and fault effect caused by mining activities. The repair and artificial-support played some restrictions on the rock mass movement and deformation, but did not show a strong or marked effect. With the increasing of mining depth and large-scale, the closure rock of the shaft will still deformed, even be destroyed.
Resumo:
This dissertation is mainly composed of seven chapters. Specifically, a preface which introduces the background and significance of the dissertation, the present state of study relating to the dissertation, the methods and frame of the study in the dissertation is presented in the first chapter. The second chapter is mainly focused on the present theories and methods about the study on the Problems of Catastrophic Destabilization which are induced by deep mining. In the third chapter, basic conditions of Jinchuan Deposit II are introduced, which include regional geological background, engineering geological conditions, in-situ stress, hydrological geological conditions, mining methods and the present state of the horizontal ole layer. The fourth chapter analysizes the problem of Catastrophic Destabilization of the horizontal ole layer with theoretical methods and gives an analytical solution of elastic foundation beam which two ends are fixed and a catastrophic model of the horizontal ole layer. With FLAC3D, the Problem of Catastrophic Destabilization is analyzed, the variation of displacement and stress of the horizontal ole layer is described, and a development of plastic zone in ore layer is given out. The contents in the sixth chapter is a preliminary design of monitoring system for the horizontal ole layer. At the end of the text, several comprehensive conclusions are given in the seventh chapter.
Resumo:
A more generalized model of a beam resting on a tensionless Reissner foundation is presented. Compared with the Winkler foundation model, the Reissner foundation model is a much improved one. In the Winkler foundation model, there is no shear stress inside the foundation layer and the foundation is assumed to consist of closely spaced, independent springs. The presence of shear stress inside Reissner foundation makes the springs no longer independent and the foundation to deform as a whole. Mathematically, the governing equation of a beam on Reissner foundation is sixth order differential equation compared with fourth order of Winkler one. Because of this order change of the governing equation, new boundary conditions are needed and related discussion is presented. The presence of the shear stress inside the tensionless Reissner foundation together with the unknown feature of contact area/length makes the problem much more difficult than that of Winkler foundation. In the model presented here, the effects of beam dimension, gap distance, loading asymmetry and foundation shear stress on the contact length are all incorporated and studied. As the beam length increases, the results of a finite beam with zero gap distance converge asymptotically to those obtained by the previous model for an infinitely long beam. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We investigated the structural, elastic, and electronic properties of the cubic perovskite-type BaHfO3 using a first-principles method based on the plane-wave basis set. Analysis of the band structure shows that perovskite-type BaHfO3 is a wide gap indirect semiconductor. The band-gap is predicted to be 3.94 eV within the screened exchange local density approximation (sX-LDA). The calculated equilibrium lattice constant of this compound is in good agreement with the available experimental and theoretical data reported in the literatures. The independent elastic constants (C-11, C-12, and C-44), bulk modules B and its pressure derivatives B', compressibility beta, shear modulus G, Young's modulus Y, Poisson's ratio nu, and Lame constants (mu, lambda) are obtained and analyzed in comparison with the available theoretical and experimental data for both the singlecrystalline and polycrystalline BaHfO3. The bonding-charge density calculation make it clear that the covalent bonds exist between the Hf and 0 atoms and the ionic bonds exist between the Ba atoms and HfO3 ionic groups in BaHfO3. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nonlinear wave equation for a one-dimensional anharmonic crystal lattice in terms of its microscopic parameters is obtained by means of a continuum approximation. Using a small time scale transformation, the nonlinear wave equation is reduced to a combined KdV equation and its single soliton solution yields the supersonic kink form of nonlinear elastic waves for the system.
Resumo:
The Dugdale-Barenblatt model is used to analyze the adhesion of graded elastic materials at the nanoscale with Young's modulus E varying with depth z according to a power law E = E-0(z/c(0))(k) (0 < k < 1) while Poisson's ratio v remains a constant, where E-0 is a referenced Young's modulus, k is the gradient exponent and c(0) is a characteristic length describing the variation rate of Young's modulus. We show that, when the size of a rigid punch becomes smaller than a critical length, the adhesive interface between the punch and the graded material detaches due to rupture with uniform stresses, rather than by crack propagation with stress concentration. The critical length can be reduced to the one for isotropic elastic materials only if the gradient exponent k vanishes.
Resumo:
Using dimensional analysis and finite element calculations we derive several scaling relationships for conical indentation into elastic-perfectly plastic solids. These scaling relationships provide new insights into the shape of indentation curves and form the basis for understanding indentation measurements, including nano- and micro-indentation techniques. They are also helpful as a guide to numerical and finite element calculations of conical indentation problems. Finally, the scaling relationships are used to reveal the general relationships between hardness, contact area, initial unloading slope, and mechanical properties of solids.
Resumo:
目前高速公路中央分隔带波形梁护栏立柱的实际设置中,普遍存在着由于分隔带地基强度低于压实路基,护栏立柱承载能力偏低,护栏的防护性能达不到设计要求的问题。对粘性土地基中立柱的受力情况进行了分析,并对地基为压实土与回填土两种情况进行了对比,给出了中央分隔带中立柱地基的加固方案。
Resumo:
The relationship is determined between saturated duration of rectangular pressure pulses applied to rigid, perfectly plastic structures and their fundamental periods of elastic vibration. It is shown that the ratio between the saturated duration and the fundamental period of elastic vibration of a structure is dependent upon two factors: the first one is the slenderness or thinness ratio of the structure; and the second one is the square root of ratio between the Young's elastic modulus and the yield stress of the structural material. Dimensional analysis shows that the aforementioned ratio is one of the basic similarity parameters for elastic-plastic modeling under dynamic loading.
Resumo:
Since hydration forces become very strong at short range and are particularly important for determining the magnitude of the adhesion between two surfaces or interaction energy, the influences of the hydration force and elastic strain energy due to hydration-induced layering of liquid molecules close to a solid film surface on the stability of a solid film in a solid-on-liquid (SOL) nanostructure are studied in this paper. The liquid of this thin SOL structure is a kind of water solution. Since the surface forces play an important role in the structure, the total free energy change of SOL structures consists of the changes in the bulk elastic energy within the solid film, the surface energy at the solid-liquid interface and the solid-air interface, and highly nonlinear volumetric component associated with interfacial forces. The critical wavelength of one-dimensional undulation, the critical thickness of the solid film, and the critical thickness of the liquid layer are studied, and the stability regions of the solid film have been determined. Emphasis is placed on calculation of critical values, which are the basis of analyzing the stability of the very thin solid film.