73 resultados para Dramatic Art
Contimuum Mesomechanical Finite Element Modeling in Materials Development: A State-of-the-Art Review
Resumo:
Food handouts to Macaca thibetana at Mt. Emei have had dramatic consequences for both man and monkey as tourism has increased over the last decade. Food handouts and human submissive behaviour facilitate beg-robbing by the monkeys. which can be regarded as a mixed conditioning chain. Because of their lack of understanding of primate behaviour and resulting inappropriate responses, many visitors have lost possessions and have been severely frightened or even injured; in fact there have been 1 0 deaths as an indirect result over that past 8 years. The appropriate human response proved to be the display of dominance to maintain a distance from a beg-robbing monkey. Road-ranging macaques have also been injured or killed by visitors to obtain meat or bones or merely for amusement. Attempts should be made to eliminate the negative effects of food handouts by increasing visitors' awareness of behavioural and ecological aspects and through aversive conditioning of the macaques.
Resumo:
Goal, Scope and Background. In some cases, soil, water and food are heavily polluted by heavy metals in China. To use plants to remediate heavy metal pollution would be an effective technique in pollution control. The accumulation of heavy metals in plants and the role of plants in removing pollutants should be understood in order to implement phytoremediation, which makes use of plants to extract, transfer and stabilize heavy metals from soil and water. Methods. The information has been compiled from Chinese publications stemming mostly from the last decade, to show the research results on heavy metals in plants and the role of plants in controlling heavy metal pollution, and to provide a general outlook of phytoremediation in China. Related references from scientific journals and university journals are searched and summarized in sections concerning the accumulation of heavy metals in plants, plants for heavy metal purification and phytoremediation techniques. Results and Discussion. Plants can take up heavy metals by their roots, or even via their stems and leaves, and accumulate them in their organs. Plants take up elements selectively. Accumulation and distribution of heavy metals in the plant depends on the plant species, element species, chemical and bioavailiability, redox, pH, cation exchange capacity, dissolved oxygen, temperature and secretion of roots. Plants are employed in the decontamination of heavy metals from polluted water and have demonstrated high performances in treating mineral tailing water and industrial effluents. The purification capacity of heavy metals by plants are affected by several factors, such as the concentration of the heavy metals, species of elements, plant species, exposure duration, temperature and pH. Conclusions. Phytoremediation, which makes use of vegetation to remove, detoxify, or stabilize persistent pollutants, is a green and environmentally-friendly tool for cleaning polluted soil and water. The advantage of high biomass productive and easy disposal makes plants most useful to remediate heavy metals on site. Recommendations and Outlook. Based on knowledge of the heavy metal accumulation in plants, it is possible to select those species of crops and pasturage herbs, which accumulate fewer heavy metals, for food cultivation and fodder for animals; and to select those hyperaccumulation species for extracting heavy metals from soil and water. Studies on the mechanisms and application of hyperaccumulation are necessary in China for developing phytoremediation.
Resumo:
Tetragonal PbTiO3 under uniaxial stress along the c-axis is investigated from first-principles. The structural parameters, polarization, and squares of the lowest optical phonon frequencies for E(1TO) and A(1)(1TO) modes at Gamma show abrupt changes near a stress sigma(c) of 1.04 GPa, which is related to the dramatic change of elastic constant c(33) resulting from the uniaxial stress applied along the c-axis. We also find that the uniaxial compressive stress could enhance the piezoelectric stress coefficients, whereas the uniaxial tensile stress could enhance the piezoelectric strain coefficients. It is also found that when the magnitude of uniaxial compressive stress sigma(33) is greater than 12 GPa, PbTiO3 is transformed to the paraelectric tetragonal phase.
Resumo:
Using first-principles molecular dynamics simulations, the displacement threshold energy and defect configurations are determined in SiC nanotubes. The simulation results reveal that a rich variety of defect structures (vacancies, Stone-Wales defects and antisite defects) are formed with threshold energies from 11 to 64 eV. The threshold energy shows an anisotropic behavior and exhibits a dramatic decrease with decreasing tube diameter. The electronic structure can be altered by the defects formed by irradiation, which suggests that the electron irradiation may be a way to use defect engineering to tailor electronic properties of SiC nanotubes.
Resumo:
We have studied magnetic and transport properties of insulating and metallic (Ga,Mn)As layers before and after annealing. A dramatic increase of the ferromagnetic transition temperature T-C by postgrowth annealing has been realized in both insulating and metallic (Ga,Mn)As. The as-grown insulating (Ga,Mn)As can be turned into metallic by the low-temperature annealing. For all the metallic (Ga,Mn)As, a characteristic feature in the temperature dependence of sheet resistance appears around T-C. This phenomenon may provide a simple and more convenient method to determine the T-C of metallic (Ga,Mn)As compared with superconducting quantum interference device (SQUID) measurement. Moreover, the T-C of the metallic (Ga,Mn)As obtained by this way is in good agreement with that measured by a SQUID magnetometer. (C) 2005 American Institute of Physics.
Resumo:
The authors report a simple but effective way to improve the surface morphology of stacked 1.3 mu m InAs/GaAs quantum dot (QD) active regions grown by metal-organic chemical vapor deposition (MOCVD), in which GaAs middle spacer and top separate confining heterostructure (SCH) layers are deposited at a low temperature of 560 degrees C to suppress postgrowth annealing effect that can blueshift emission wavelength of QDs. By introducing annealing processes just after depositing the GaAs spacer layers, the authors demonstrate that the surface morphology of the top GaAs SCH layer can be dramatically improved. For a model structure of five-layer QDs, the surface roughness with the introduced annealing processes (IAPs) is reduced to about 1.3 nm (5x5 mu m(2) area), much less than 4.2 nm without the IAPs. Furthermore, photoluminescence measurements show that inserting the annealing steps does not induce any changes in emission wavelength. This dramatic improvement in surface morphology results from the improved GaAs spacer surfaces due to the IAPs. The technique reported here has important implications for realizing stacked 1.3 mu m InAs/GaAs QD lasers based on MOCVD.
Resumo:
Si0.75Ge0.25/Si/Si0.5Ge0.5 trilayer asymmetric superlattices were prepared on Si (001) substrate by ultrahigh vacuum chemical vapor deposition at 500 degrees C. The nonlinear optical response caused by inherent asymmetric interfaces in this structure predicted by theories was verified by in-plane optical anisotropy in (001) plane measured via reflectance difference spectroscopy. The results show Si0.75Ge0.25/Si/Si0.5Ge0.5 asymmetric superlattice is optically biaxial and the two optical eigen axes in (001) plane are along the directions [110] and [-110], respectively. Reflectance difference response between the above two eigen axes can be influenced by the width of the trilayers and reaches as large as similar to 10(-4)-10(-3) in 15-period 2.7 nm-Si0.75Ge0.25/8 nm-Si/1.3 nm-Si0.5Ge0.5 superlattice when the normal incident light wavelength is in the range of 500-1100 nm, which is quite remarkable because the optical anisotropy does not exist in bulk Si.
Resumo:
The characteristic of several night imaging and display technologies on cars are introduced. Compared with the current night vision technologies on cars, Range-gated technology can eliminate backscattered light and increase the SNR of system. The theory of range-gated image technology is described. The plan of range-gated system on cars is designed; the divergence angle of laser can be designed to change automatically, this allows overfilling of the camera field of view to effectively attenuate the laser when necessary. Safety range of the driver is calculated according to the theory analysis. Observation distance of the designed system is about 500m which is satisfied with the need of safety driver range.
Resumo:
The linear electro-optic (Pockels) effect of wurtzite gallium nitride (GaN) films and six-period GaN/AlxGa1-xN superlattices with different quantum structures were demonstrated by a polarization-maintaining fiber-optical Mach-Zehnder interferometer system with an incident light wavelength of 1.55 mu m. The samples were prepared on (0001) sapphire substrate by low-temperature metalorganic chemical vapor deposition (MOCVD). The measured coefficients of the GaN/AlxGa1-xN superlattices are much larger than those of bulk material. Taking advantage of the strong field localization due to resonances, GaN/AlxGa1-xN SL can be proposed to engineer the nonlinear responses.
Resumo:
We introduce a double source electron beam evaporation (DSEBET) technique in this paper. The refractive index coatings were fabricated on K9 glass substrate by adjusting the evaporation rates of two independent sources. The coatings, which were described by atomic force microscopy (AFM), show good compactness and homogeneity. The antireflective (AR) coatings were fabricated on Superluminescent Diodes (SLD) by DSEBET. The hybrid AR coatings on the facets of SLD were prepared in evaporation rates of 0.22nm/s and 0.75nm/s for silicon and silicon dioxide, respectively. The results of AFM and spectral performance of coated SLD show that DSEBET has a promising future in preparing the coatings on optoelectronic devices.
Resumo:
Single point defect microcavity possesses only the degenerate dipole modes under certain photonic crystal structure parameters. By deforming lattice structure, the degeneracy of the dipole modes has been broken. Theoretical simulation shows the large splitting of 65nm between the splitted x-mode and y-mode, approximate to the luminescent gain spectrum, which benefits for the single mode lasing. Experimentally the single dipole mode lasing, y-mode, is achieved in the deformed microcavity.
Resumo:
In this work, the guided modes of a photonic crystal polarization beam splitter (PC-PBS) are studied. We demonstrate that the transmission of a low-loss photonic crystal 120 degrees waveguide bend integrated with the PBS will be influenced if the PBS is multi-moded. We propose a single-moded PC-PBS structure by introducing deformed structures, and it shows twice the enhancement of the transmission. This device with remarkable improvement of performance is promising in the use of photonic crystal integrated circuits design.