32 resultados para Classical Theories of Gravity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In f ( R) gravity and scalar-tensor gravity, the condition to protect the GSL can also hold because the temperature should be positive, gravity is always attractive and the effective Newton constant should be an approximate constant satisfying the experimental bounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

displacement thickness is lower than in the pure-gas case alone. The results indicate

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid mixtures of water and deuterium oxide as the liquid phase, were used to match the density of charged colloidal particles. Kossel diffraction method was used to detect the crystal structures. The experiments under the density-matched (g=0) and unmatched (g=1) conditions are compared to examine the influence of gravity on the crystal structures formed by self-assembly of 110 nm (in diameter) polystyrene microspheres. The result shows that die gravity tends to make the lattice constants of colloidal crystals smaller at lower positions, which indicates that the effect of gravity should be taken into account in the study of the colloidal crystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The so-called hydrodynamic (HD) model on optical-phonon modes in superlattices is critically examined. Contrary to the HD model, a comparison between TM polaritons and the Fuchs-Kliewer-type interface modes has shown that the Fuchs-Kliewer interface modes do possess Frohlich potentials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classical theories have successfully provided an explanation for convection in a liquid layer heated from below without evaporation. However, these theories are inadequate to account for the convective instabilities in an evaporating liquid layer, especially in the case when it is cooled from below. In the present paper, we study the onset of Marangoni convection in a liquid layer being overlain by a vapor layer.A new two-sided model is put forward instead of the one-sided model in previous studies. Marangoni-Bénard instabilities in evaporating liquid thin layers are investigated with a linear instability analysis. We define a new evaporation Biot number, which is different from that in previous studies and discuss the influences of reference evaporating velocity and evaporation Biot number on the vapor-liquid system. At the end, we explain why the instability occurs even when an evaporating liquid layer is cooled from below.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluid flow associated with micro and meso scale devices is currently of interest. Experiments were performed to study the fluid flow in meso-scale channels. A straight flow tube was fabricated with 1.0x4.0mm^2 in rectangular cross section and 200mm in length, which was made of quartz for flow visualization and PIV measurements. Reynolds numbers were ranged from 311 to over 3105. The corresponding pressure drop was from 0.65KPa to over 16.58KPa between the inlet and outlet of the tube. The micro PIV was developed to measure the velocity distribution in the tube. A set of microscope object lens was mounted ahead of CCD camera to obtain optimized optical magnification on the CCD chip. The velocity distributions near the outlet of the tube were measured to obtain full-developed flow. A CW laser beam was focused directly on the test section by a cylinder lens to form a small light sheet. Thus, high power density of light was formed on the view region. It is very important to the experiment while the velocity of the flow reaches to a few meters per second within millimeter scale. In this case, it is necessary to reduce exposure time to microseconds for PIV measurements. In the present paper, the experimental results are compared with the classical theories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaporative convection and instability give rise to both scientific and technological interests. Practically, a number of the industrial applications such as thin-film evaporators, boiling technologies and heat pipes concern with the evaporation process of which through the vapor-liquid interface the heat and mass transfer occur. From a physical viewpoint, one of interesting questions is the mechanisms of convection instability in thin-liquid layers induced by the coupling of evaporation phenomenon and Marangoni effect at the mass exchanged interface. Classical theories, including Rayleigh’s and Pearson’s, have only successfully explained convection in a liquid layer heated from below without evaporation. However these theories are unable to explain the convection in an evaporating thin layer, especially liquid layer is cooled from below. In present paper, a new two-sided model is put forward rather than the one-sided model in previous works. In previous works, the vapor is treated as passive gas and dynamics of vapor has been ignored. In this case, the vapor liquid system can be described by one-sided model. In our two-sided model, the dynamics of vapor should be considered. Linear instability analysis of the Marangoni-Bénard convection in the two-layer system with an evaporation interface is performed. We define a new evaporating Biot number which is different from the Biot number in one-sided model and obtain the curves of critical Marangoni number versus wave number. In our theoretical results, the Biot number and the evaporating velocity play a major role in the stability of the vapor-liquid system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quasi-steady state growth and dissolution in a 2-D rectangular enclosure is numerically investigated. This paper is an extension to indicate the effects of the orientation of gravity on the concentration field in crystallization from solution under microgravity, especially on the lateral non-uniformity of concentration distribution at the growth surface. The thermal and solute convection are included in this model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

根据两流体同心环状流线性稳定性分析的结果 ,对微重力气 /液两相流地面模拟实验所应遵循的相似准则进行了探讨 ,得到了一个新的重力无关性准则 ,即Bond数和环形区流体相的毛细数之比的绝对值不大于 1 .此外 ,微重力气 /液两相流模拟实验还必须满足两个条件 ,即流量比和气相表观Weber数应与所模拟的流动中对应数值相等 . In the present paper, the principle of similarity for two phase flows at microgravity is studied based on the results of the linear stability analysis of the two fluid concentric annular flow configuration. A new criterion of gravity independence, namely the absolute value of the ratio between the Bond number and the capillary number of the phase flowing in the annulus is no more than one, is achieved. It is also pointed out that the flowrate ratio and the gas superficial Weber number must have the same ...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transition process of intermittent flow in a longitudinal section of Bingham fluid from initial distribution to fully developed state was numerically investigated in this paper. The influences of slope dimensionless runoff Q* and viscosity μ0* on the dimensionless surge speed U* were also presented in a wide range of parameters. By one typical example, the intermittent flow possessed wave characteristics and showed a supercritical flow conformation for a fully developed flow. The distributions of gravity and bed drag along the flow path and the velocity distribution of flow field were also analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using dimensional analysis and finite-element calculations we determine the functional form of indentation loading curves for a rigid conical indenter indenting into elastic-perfectly plastic solids. The new results are compared with the existing theories of indentation using conical indenters, including the slip-line theory for rigid-plastic solids, Sneddon's result for elastic solids, and Johnson's model for elastic-perfectly plastic solids. In the limit of small ratio of yield strength (Y) to Young's modulus (E), both the new results and Johnson's model approach that predicted by slip-line theory for rigid-plastic solids. In the limit of large Y/E, the new results agree with that for elastic solids. For a wide range of Y/E, some difference is found between Johnson's model-and the present result. This study also demonstrates the possibilities and limitations of using indentation loading curves to extract fundamental mechanical properties of solids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been reported recently that single carbon nanotubes were attached to AFM tips to act as nanotweezers. In order to investigate its stability, a vertical single-walled carbon nanotube (SWCNT) under its own weight is studied in this paper. The lower end of the carbon nanotube is clamped. Firstly the governing dimensionless numbers are derived by dimensional analysis. Then the theoretical analysis based on an elastic column model is carried out. Two ratios, I.e., the ratio of half wall thickness to radius (t=R) and the ratio of gravity to elastic resilience ($\rho$gR=E), and their influences on the ratio of critical length to radius are discussed. It is found that the relationship between the critical ratio of altitude to radius and ratio of half thickness to radius is approximately linear. As the dimensionless number $\rho$gR=E increases, the compressive force per unit length (weight) becomes larger, thus critical ratio of altitude to radius must become smaller to maintain stability. At last the critical length of SWCNT is calculated. The results of this paper will be helpful for the stability design of nanotweezers-like nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computer simulation was performed to explore the features and effects of sedimentation on rapid coagulation. To estimate the accumulated influence of gravity on coagulation for dispersions, a sedimentation influence ratio is defined. Some factors possibly related to the influence of sedimentation were considered in the simulation and analysed by comparing the size distribution of aggregates, the change in collision number, and coagulation rates at different gravity levels (0 g, 1 g and more with g being the gravitational constant).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is suggested that the oscillation of thermocapillary convection may be excited by the buoyancy instability. By means of numerical simulation of the finite-element method, the temperature distributions in the liquid bridge are qualitatively analyzed. The temperature gradient in a certain flow region of liquid bridge may turn to be parallel to the direction of gravity when the temperature difference △T between two boundary rods of liquid bridge is larger than the critical value. The buoyancy instability may be excited, and then the thermocapillary oscillatory convection appears, as the temperature difference increases further. The distribution of the critical Marangoni number in the micro-gravity environment is derived from the data on the ground experiments. The results show that the onset of thermocapillary oscillatory convection is delayed in the case of smaller typical scale of liquid bridge and lower gravity environment.