94 resultados para Behavior modification.
Resumo:
The morphology and mechanical properties of polypropylene/high-density polyethylene (PP/HDPE) blends in a wide range of compositions modified by a sequential Ziegler-Natta polymerization product (PP-PE) have been investigated. PP-PE contains multiple components such as PP, ethylene-propylene copolymer (EPC), and high molecular weight polyethylene (HMWPE). The effects of PP-PE on the mechanical properties and morphology of the PP/HDPE blends are the aggregative results of all its individual components. Addition of PP-PE to the blends not only improved the tensile strength of the blends, but the elongation at break increased linearly while the moduli were nearly unchanged. Morphological studies show that the adhesion between the two phases in all the blends of different compositions is enhanced and the dispersed domain sizes of the blends are reduced monotonously with the increment of the content of PP-PE. PP-PE has been demonstrated to be a more effective compatibilizer than EPC. Based on these results, it can be concluded that the tensile strength of the blends depends most on the adhesion between the two phases and the elongation at break depends most on the domain size of the dispersed component. (C) 1995 John Wiley & Sons, Inc.
Resumo:
Polydimethylsiloxane (PDMS) has been widely used as a base material for bio-MEMS/NEMS devices. It is difficult for PDMS to transfer and spread aqueous solution as a kind of highly hydrophobic material. Therefore, surface modification is necessary for PDMS to make it hydrophilic. In this paper, a method of hydrophilization of PDMS surface is proposed. Gold is sputtered to the PDMS substrate by sputter coater in different average thicknesses. Relationship between the average thickness of gold on the PDMS substrate and the contact angle of the surface was studied. It was found that even gold of average thickness less than 1 nm can result in about 25 degrees change of contact angle. AFM is also used to get topographic information of PDMS surface coated with gold. Three cases are classified with different amount of Au: (1) Heterogeneous zone; (2) Transition zone; (3) Film zone. For heterogeneous zone, a simple model about heterogeneous phase wetting is put forward to interpret this phenomenon.
Resumo:
Thermal properties and crystallization-behavior of ultrafine fully-vulcanized powdered rubber (UFPR) toughened poly propylene (PP) were studied by Differential scanning calorimetry (DSC) and Wide angle X-ray diffraction (WAXD) measurements. It was found that the fraction of beta-form in the PP crystal increased at first, then sharply deceased up to zero with increasing UFPR content
Resumo:
The influence of montmorillonite (MMT) on the syndiotactic polymerization behavior of styrene was studied. To avoid the hydrophilic surface of the MMT coming into contact with the catalyst, which could poison it, SAN was introduced between the MMT and Cp*Ti (OCH3)(3). MMT was introduced into the catalytic system as a supporter for the Ti catalyst (supported catalytic system) or just dispersed in the polymerization solvent directly (in situ polymerization system). The polymerization results showed that surface modification of MMT dramatically affected the catalytic activity as well as the syndiotacticity of the polymers. This is mainly explained by the insulator SAN preventing the formation of the inactive/little active species Si-O-Ti and other atactic active species resulting from the reaction of the -OH on the MMT layer surface with Cp*Ti(OCH3)(3).
Direct electrochemistry behavior of Cytochrome c on silicon dioxide nanoparticles-modified electrode
Resumo:
A newfangled direct electrochemistry behavior of Cytochrome c (Cyt c) was found on glassy carbon (GC) electrode modified with the silicon dioxide (SiO2) nanoparticles by physical adsorption. A pair of stable and well-defined redox peaks of Cyt c ' quasi-reversible electrochemical reaction were obtained with a heterogeneous electron transfer rate constant of 1.66 x 10(-3) cm/s and a formal potential of 0.069 V (vs. Ag/AgCl) (0.263 V versus NHE) in 0.1 mol/L pH 6.8 PBS. Both the size and the amount of SiO2 nanoparticles could influence the electron transfer between Cyt c and the electrode. Electrostatic interaction which is between the negative nanoparticle surface and positively charged amino acid residues on the Cyt c surface is of importance for the stability and reproducibility toward the direct electron transfer of Cyt c. It is suggested that the modification of SiO2 nanoparticles proposes a novel approach to realize the direct electrochemistry of proteins.
Resumo:
Among complex oxides containing rare earth and manganese BaLn(2)Mn(2)O(7)( Ln = rare earth) with the layered perovskite type and Ln(2)(Mn, M)O-7 with pyrochlore-related structure were studied since these compounds show many kinds of phases and unique phase transitions. In BaLn(2)Mn(2)O(7) there appear many phases, depending on the synthetic conditions for each rare earth. The tetragonal phase of so-called Ruddlesden-Popper type is the fundamental structure and many kinds of deformed modification of this structure are obtained. For BaEu2Mn2O7 at least five phases have been identified from the results of X-ray diffraction analysis with the space group P4(2)/mnm, Fmmm, Immm and A2/m in addition to the fundamental tetragonal I4/mmm phase. In the pyrochlore-related type compounds, Ln(2)Mn(2-x)M(x)O(7)(M = Ta, Nb, W etc), there also appear several phases With different crystal structures. With regard to every rare earth, Ln(2)MnTaO(7) phase is stable only for excess Ta and can be obtained under high oxygen partial pressure process. This group has trigonal structure with zirkelite type ( P3(1)21 space group).
Resumo:
Electrospun poly (vinyl alcohol) (PVA) nanofibers mat was collected on indium tin oxide (ITO) substrate. Heat crosslinked nanofibers mat became water-insoluble and firmly fixed on ITO substrate even in water. Oppositely charged poly (allylamine hydrochloride) (PAH) and Dawson-type polyoxometalate (POM), Na6P2Mo18O62 (P2Mo18), were alternately assembled on PVA nanofibers-coated ITO substrate to construct multilayer film through an electrostatic layer-by-layer (LBL) technique. The scanning electron microscope (SEM) images showed that P2Mo18 multilayer film was selectively deposited on PVA nanofibers while the unoccupied space by nanofibers on bare ITO was acted as substrate at the same time because the electrospun nanofibers have larger surface area and surface energy than the flat substrate. The cyclic voltammograms current responses of the P2Mo18 multilayer film on PVA/ITO electrode showed three well-defined redox couples of P2Mo18, but very small because P2Mo18 multilayer film was selectively deposited on PVA nanofibers with poor conductivity. In addition, the photochromic behavior of P2Mo18 multilayer film on PVA/ITO was investigated through UV-vis spectra and electron spin resonance (ESR). Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) proved that the charge-transfer complex was formed between PAH and P2Mo18 after UV irradiation.
Resumo:
4-Aminobenzoic acid (4-ABA) was covalently grafted on a glassy carbon electrode (GCE) by amine cation radical formation in the electrooxidation process of the amino-containing compound. X-ray photoelectron spectroscopy measurement proves the presence of 4-carboxylphenylamine monolayer on the GCE. The redox responses of various electroactive probes were investigated on the 4-ABA-modified GCE. Electron transfer to Fe(CN)(6)(3-) in solutions of various pHs was studied by both cyclic voltammetry and electrochemical impedance analysis on the modified electrode. Changes in the solution pH value result in the variation of the terminal group charge state, based on which surface pK(a) values are estimated. The 4-ABA-modified GCE was used as a suitable charged substrate to fabricate polyoxometalates-consisting (POM-consisting) monolayer and multilayer films through layer-by-layer assembly based on electrostatic attraction. Cyclic voltammetry shows the uniform growth of these three-dimensional multilayer films. Taking K10H3[Pr-(SiMo7W4O39)(2)]. H2O (abbreviated as Pr(SiMo7W4)(2)), for example, the preparation and electrochemical behavior of its monolayer and multilayer film had been investigated in detail. This modification strategy is proven to be a general one suitable for anchoring many kinds of POMs on the 4-ABA-modified GCE.
Resumo:
Two modification methods for multilayer formation, i.e. immersion growth and electrochemical growth, were studied comparatively for their influence on the electrochemical behavior and the electrocatalytic properties of the thus-fabricated SiMo11V-containing multilayer films. Electrochemical growth was proven to be a more suitable method than immersion growth in preparing uniform ultrathin multilayer self-assemblies with good functions. We investigated the effects of scan rate and pH on the electrochemical behavior of the monolayer and multilayer films. We also compared the electrocatalytic effects on the reduction of BrO3- and HNO2 by the multilayer films prepared by the two methods. Moreover, the influence of multilayer thickness and the identity of the outermost layer on the electrocatalytic properties were studied. Much higher catalytic currents appeared on the thicker multilayer films than those on the thinner ones. On the other hand, the catalytic currents became smaller when the multilayer films with SiMo11V as the outermost layer were covered with an additional quarternized poly(4-vinylpyridine) layer partially complexed with osmium bis(2,2'-bypyridine) chloride (QPVP-Os layer). These influences were believed to be due to the different quantities of electrocatalyst loaded in the multilayer films and the blocking effect of the QPVP-Os outermost layer. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The fracture behavior of ABS materials with a particle diameter of 110 nm and of 330 nm was studied using instrumented Charpy impact tests. The effects of rubber content and temperature on fracture behavior, deformation mode, stable crack extension, plastic zone size, J-integral value, and crack opening displacement were investigated. In the case of a particle size of 110 nm, the material was found to break in a brittle manner, and the dominant crack mechanism was unstable crack propagation. Fracture toughness increases with increasing rubber content. In the case of a particle size of 330 nm, brittle-to-tough transition was observed. The J-integral value first increases with rubber content, then levels off after the rubber content is greater than 16 wt %. The J-integral value of a particle diameter of 330 nm was found to be much greater than that of 110 nm. The J-integral value of both series first increased with increasing temperature until reaching the maximum value, after which it decreased with further increasing temperature. The conclusion is that a particle diameter of 330 nm is more efficient than that of 110 nm in toughening, but for both series the effectiveness of rubber modification decreases with increasing temperatures higher than 40 degreesC because of intrinsic craze formation in the SAN matrix at temperatures near the glass transition of SAN. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The thermal properties and crystalline structure of the amphiphilic graft copolymers CR-g-PEG600, CR-g-PEG2000, and CR-g-PEG6000 using chloroprene rubber (CR) as the hydrophobic backbone and poly(ethylene glycol) (PEG) with different molecular weights as the hydrophilic side chains were studied by DSC and WAXD. The results showed that a distinct phase-separated structure existed in CR-g-PEGs because of the incompatibility between the backbone segments and the side-chain segments. For all the polymers studied, T-m2, which is the melting point of PEG crystalline domains in CR-g-PEG, decreased compared to that of the corresponding pure PEG and varied little with PEG content. For CR-g-PEG600 and CR-g-PEG2000, T-m1, which is the melting point of the CR crystalline domains, increased with increasing PEG content when the PEG content was not high enough, and at constant PEG content, the longer were the PEG side chains the higher was the T-m1. The crystallite size L-011 of CR in CR-g-PEGs increased compared to that of the pure CR and decreased with increasing PEG content. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The modification of polypropylene (PP) was accomplished by melt grafting glycidyl methacrylate (GMA) on its molecular chains. The resulting PP-g-GMA was used to prepare binary blends of polyamide 1010 (PA1010) and PP-g-GMA. Different blend morphologies were observed by scanning electron microscopy (SEM) according to the nature and content of PA1010 used. Comparing the PA1010/PP-g-GMA and PA1010/PP binary blends, the size of the domains of PP-g-GMA were much smaller than that of PP at the same compositions. It was found that mechanical properties of PA1010/PP-g-GMA blends were obviously better than that of PA1010/PP blends, and the mechanical properties were significantly influenced by wetting conditions for uncompatibilized and compatibilized blends. A different dependence of the flexural modulus on water was found for PA1010/PP and PA1010/PP-g-GMA. These behaviors could be attributed to the chemical interactions between the two components and good dispersion in PA1010/PP-g-GMA blends. Thermal and rheological analyses were performed to confirm the possible chemical reactions taking place during the blending process. (C) 1997 John Wiley & Sons, Inc.
Resumo:
In order to investigate the effect of acid properties on the coke behavior and stability of butene aromatization, we prepared the AHZSM-5 samples with various acid properties by the methods of hydrothernial treatment and K addition. The reaction of butene aromatization was carried out at 350 degrees C and 0.5 MPa in a continuous flow fixed bed. The characterization of the fresh/coked catalysts with NH3-TPD, N-2 adsorption-desorption measurement, and TG techniques has shown that a large amount of acid sites (high acid density) of the AHZMS-5 catalyst can cause a large quantity of coke deposit and serious channel blockage, and so result in a rapid loss of aromatization activity. On the contrary, after a great reduction in strong acid sites of AHZSM-5 catalyst resulting from some K-modification, the presence of only many weak acid sites also could not lessen the formation of coke nor improve the reaction stability of butene aromatization. Interestingly, the simultaneous reduction in the strong and weak acid sites to a desirable level by hydrothermal treating the AHZSM-5 catalyst at a proper temperature can effectively suppress the coke formation and channel blockage, and thus improve its olefin aromatization stability. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
对微孔泡沫塑料力学行为的研究文献进行了综述,简单介绍了微孔泡沫塑料的制备和表征方法,重点介绍了微孔泡沫塑料力学性能的研究工作,其中也包括作者近期在该领域的一些工作。这些工作主要讨论了微孔泡沫塑料的压缩、拉伸、冲击、疲劳和黏弹性效应。最后:给出了对该领域工作的一些讨论和展望。
Resumo:
The strengthening behavior of particle-reinforced metal-matrix composites (MMCp) is primarily attributed to the dislocation strengthening effect and the load-transfer effect. To account for these two effects in a unified way, a new hybrid approach is developed in this paper by incorporating the geometrically necessary dislocation strengthening effect into the incremental micromechanical scheme. By making use of this hybrid approach, the particle-size-dependent inelastic deformation behavior of MMCp is given. Some comparisons with the available experimental results demonstrate that the present approach is satisfactory.