518 resultados para Beam splitter
Resumo:
We propose an experimentally feasible scheme to generate various types of entangled states of light fields by using beam splitters and single-photon detectors. Two beams of light fields are incident on two beam splitters respectively with each beam being asymmetrically split into two parts in which one part is supposed to be so weak that it contains at most one photon. We let the two weak output modes interfere at a third beam splitter. A conditional joint measurement on both weak output modes may result in an entanglement between the other two output modes. The conditions for the maximal entanglement are discussed based on the concurrence. Several specific examples are also examined.
Resumo:
A repeat-until-success (RUS) measurement-based scheme for the implementation of the distributed quantum computation by using single-photon interference at a 50:50 beam splitter is proposed. It is shown that the 50:50 beam splitter can naturally project a suitably encoded matter-photon state to either a desired entangling gate-operated state of the matter qubits or to their initial state when the photon is detected. The recurrence of the initial state permits us to implement the desired entangling gate in a RUS way. To implement a distributed quantum computation we suggest an encoding method by means of the effect of dipole-induced transparency proposed recently [E. Waks and J. Vuckovic, Phys. Rev. Lett. 96, 153601 (2006)]. The effects of the unfavorable factors on our scheme are also discussed.
Resumo:
We described a highly efficient polarizing beam splitter (PBS) of a deep-etched binary-phase fused-silica grating, where TE- and TM-polarized waves are mainly diffracted in the -1st and 0th orders, respectively. Tb achieve a high extinction ratio and diffraction efficiency, the grating depth and period are optimized by using rigorous coupled-wave analysis, which can be well explained based on the modal method with effective indices of the modes for TE/TM polarization. Holographic recording technology and inductively coupled plasma etching are employed to fabricate the fused-silica PBS grating. Experimental results of diffraction efficiencies approaching 80% for a TE-polarized wave in the -1st order and more than 85% for a TM-polarized wave in the 0th order were obtained at a wavelength of 1550 nm. Because of its compact structure and simple fabrication process, which is suitable for mass reproduction, a deep-etched fused-silica grating as a PBS should be a useful device for practical applications. (C) 2007 Optical Society of America
Resumo:
The usual beam splitter of multilayer-coated film with a wideband spectrum is not easy to achieve. We describe the realization of a wideband transmission two-port beam splitter based on a binary fused-silica phase grating. To achieve high efficiency and equality in the diffracted 0th and -1st orders, the grating profile parameters are optimized using rigorous coupled-wave analysis at a wavelength of 1550 nm. Holographic recording and the inductively coupled plasma dry etching technique are used to fabricate the fused-silica beam splitter grating. The measured efficiency of (45% x 2) = 90% diffracted into the both orders can be obtained with the fabricated grating under Littrow mounting. The physical mechanism of such a wideband two-port beam splitter grating can be well explained by the modal method based on two-beam interference of the modes excited by the incident wave. With the high damage threshold, low coefficient of thermal expansion, and wideband high efficiency, the presented beam splitter etched in fused silica should be a useful optical element for a variety of practical applications. (C) 2008 Optical Society of America.
Resumo:
Modal analysis of a deep-etched low-contrast two-port beam splitter grating under Littrow Mounting is presented. The guideline for the design of a subwavelength transmission fused-silica phase grating as high-efficiency grating, polarizing beam splitter (PBS), and two-port beam splitter, is summarized. As an example, a polarization-independent two-port beam splitter grating is designed at wavelength of 1064 nm. We firstly analyzed the physical essence of the grating by the simplified modal method. The guideline for the grating design and the approximate grating parameters are obtained. Then using the rigorous coupled-wave analysis (RCWA) with parameters varying around the approximate ones, Optimum grating parameters can be determined. With the design guideline, the time for the rigorous calculation of the grating profile parameters can be reduced significantly. (C) 2008 Elsevier B.V. All rights reserved
Resumo:
We investigated the use of a deep-etched fused-silica grating with triangular-shaped grooves as a highly efficient polarizing beam splitter (PBS). A triangular-groove PBS grating is designed at a wavelength of 1550 nm to be used in optical communication. When it is illuminated in Littrow mounting, the transmitted TE- and TM-polarized waves are mainly diffracted in the minus-first and zeroth orders, respectively. The design condition is based on the average differences of the grating mode indices, which is verified by using rigorous coupled-wave analysis. The designed PBS grating is highly efficient over the C+L band range for both TE and TM polarizations (> 97.68 %). It is shown that such a triangular-groove PBS grating can exhibit a higher diffraction efficiency, a larger extinction ratio, and less reflection loss than the binary-phase fused-silica PBS grating. (C) 2008 Optical Society of America.
Resumo:
A deep-etched polarization-independent binary fused-silica phase grating as a three-port beam splitter is designed and manufactured. The grating profile is optimized by use of the rigorous coupled-wave analysis around the 785 nm wavelength. The physical explanation of the grating is illustrated by the modal method. Simple analytical expressions of the diffraction efficiencies and modal guidelines for the three-port beam splitter grating design are given. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in good agreement with the theoretical values. (c) 2008 Optical Society of America.
Resumo:
We theoretically investigated the design of a metal-mirror-based reflecting polarizing beam splitter (RPBS). The metal mirror is a silver slab, which is embedded in the substrate of a rectangular silica transmission grating. By using a modal analysis and rigorous coupled-wave analysis, an RPBS grating is designed for operation at 1550 nm. When it is illuminated in Littrow mounting, the transverse electric (TE) and transverse magnetic (TM) waves will be mainly reflected in the minus-first and zeroth orders, respectively. Moreover, a wideband RPBS grating is obtained by adopting the simulated annealing algorithm. The RPBS gratings exhibit high diffraction efficiencies (similar to 95%) and high extinction ratios over a certain angle and wavelength range, especially for the minus-first-order reflection. This kind of RPBS should be useful in practical optical applications.
Polaring beam splitter of two-layer dielectric rectangular transmission gratings in Littrow mounting