158 resultados para BIOLOGICAL ACCUMULATION
Resumo:
Accumulations of selenium in kelp Laminaria japonica cultured in seawater was achieved by adding selenite (Na2SeO3) with or without N-P (NaNO3 + NaH2PO4) nutrients at different concentrations. Biotransformation of selenium in the kelp was investigated through measuring the selenium of biological samples and different biochemical fractionations. The results showed that the optimal selenite-enrichment concentration is 200 mg L-1, which can allow the kelp to accumulate a total selenium content from 0.51 +/- 0.15 to 26.23 +/- 3.12 mug g(-1) of fresh weight (fw). Selenium composition analysis of kelp (control group) showed that selenium is present as organic selenium, which is up to 86.22% of the total selenium, whereas inorganic selenium is barely 4.85%. When L. japonica was exposed for 56 h in seawater containing 200 mg L-1 Na2SeO3, the organic selenium was 16.70 mug g(-1) of fw (68.23%) and inorganic selenium was 4.71 mug g(-1) of fw (19.26%). The capability of accumulation of selenium was further enhanced by adding N-P nutrients to the selenite-enriched medium. Total selenium is increased to be 33.65 mug g(-1) of fw at optimal concentration of N-P nutrient (150 mg L-1 NaNO3 and 25 mg L-1 NaH2PO4), whereas the inorganic selenium was not increased and remained at 4.597 mug g(-1) of fw (13.36%), and the increased part of selenium was organic selenium. This implied that kelp L. japonica could effectively transform inorganic selenium into organic selenium through metabolism.
Resumo:
Influence of La3+ on the accumulation of trace elements (Se-75, Co-56, Rb-83, V-48, (95)mTc, and Ga-67) in chloroplasts of cucumber seedling leaves was studied by a radioactive multitracer technique. At the same time, chloroplast contents of different concentrations of La3+ treatment were calculated. It was observed that chloroplast contents peaked at 0.02 mM La3+ treatment and that the uptake and distribution of these trace elements in chloroplasts of cucumber seedling leaves are different under different La3+, treatments. With the increase of lanthanum concentrations from 0.002 to 2 mM, the uptake percentages of Se-75, Co-56, and Rb-83 presented an obvious increase and then sharply decreased in contrast to the nonlanthanum treatment, whereas there appeared a sharp decrease and then restored control level in the uptake of V-48. The other two trace elements, namely Tc-95m and Ga-67, were accumulated only in the presence of 0.02 mM La3+. The results indicate that lanthanum treatments to growing the cucumber lead to the change of trace element uptake in the chloroplasts of leaves, which suggest that lanthanum might influence the accumulation of trace elements in chloroplasts of cucumber seedling leaves by regulation of various ion transport mechanisms, thus affecting the photosystem of leaves.
Resumo:
In this paper, construction of hybrid device by integrating nanowires with F1-ATPase motors is described. The nickel nanowires and multi-segment nanowires, including gold and nickel, were fabricated by electrochemical deposition in nanoporous templates. The nickel nanowires functionalized by biotinylated peptide can be assembled directly onto F1-ATPase motors to act as the propellers. If the multicomponent nanowires, including gold and nickel, were selectively functionalized by the thiol group modified ssDNA and the synthetic peptide, respectively, the biotinylated F1- ATPase motors can be attached to the biotinylated peptide on nickel segment of the nanowires. Then, the multi-component nanowires can also be used as the propellers, and one may observe the rotations of the multi-component nanowires driven by F1-ATPase motors. Therefore, introduction of multiple segments along the length of a nanowire can lead to a variety of multiple chemical functionalities, which can be selectively bound to cells and special biomolecules. This method provides an insight for the construction of other hybrid devices with its controlling arrangement of different biomolecule on designed nanometer scale structures.
Resumo:
A transmission electron microscopy (TEM) study has been carried out to uncover how dislocations and twins accommodate large plastic strains and accumulate in very small nanocrystalline Ni grains during low-temperature deformation. We illustrate dislocation patterns that suggest preferential deformation and nonuniform defect storage inside the nanocrystalline grain. Dislocations are present in individual and dipole configurations. Most dislocations are of the 60 degrees type and pile up on (111) slip planes. Various deformation responses, in the forms of dislocations and twinning, may simultaneously occur inside a nanocrystalline grain. Evidence for twin boundary migration has been obtained. The rearrangement and organization of dislocations, sometimes interacting with the twins, lead to the formation of subgrain boundaries, subdividing the nanograin into mosaic domain structures. The observation of strain (deformation)-induced refinement contrasts with the recently reported stress-assisted grain growth in nanocrystalline metals and has implications for understanding the stability and deformation behavior of these highly nonequilibrium materials.
Resumo:
Laser conditioning effects of the HfO2/SiO2 antireflective (AR) coatings at 1064 nm and the accumulation effects of multishot laser radiation were investigated. The HfO2/SiO2 AR coatings were prepared by E-beam evaporation (EBE). The singleshot and multi-shot laser induced damage threshold was detected following ISO standard 11254-1.2, and the laser conditioning was conducted by three-step raster scanning method. It was found that the single-shot LIDT and multi-shot LIDT was almost the same. The damage mostly > 80% occurred in the first shot under multi-shot laser radiation, and after that the damage occurring probability plummeted to < 5%. There was no obvious enhancement of the laser damage resistance for both the single-shot and multi-shot laser radiation of the AR coatings after laser conditioning. A Nomarski microscope was employed to map the damage morphology, and it found that the damage behavior is defect-initiated for both unconditioned and conditioned samples. © 2004 Elsevier B.V. All rights reserved.