103 resultados para ACTIVATION ENERGY
Electron ground state energy level determination of ZnSe self-organized quantum dots embedded in ZnS
Resumo:
Optical and electrical characterization of the ZnS self-organized quantum dots (QDs) embedded in ZnS by molecular beam epitaxy have been investigated using photoluminescence (PL), capacitance-voltage (C-V), and deep level transient Fourier spectroscopy (DLTFS) techniques. The temperature dependence of the free exciton emission was employed to clarify the mechanism of the PL thermal quenching processes in the ZnSe QDs. The PL experimental data are well explained by a two-step quenching process. The C-V and DLTFS techniques were used to obtain the quantitative information on the electron thermal emission from the ZnSe QDs. The correlation between the measured electron emission from the ZnSe QDs in the DLTFS and the observed electron accumulation in the C-V measurements was clearly demonstrated. The emission energy for the ground state of the ZnSe QDs was determined to be at about 120 meV below the conduction band edge of the ZnS barrier, which is in good agreement with the thermal activation energy, 130 meV, obtained by fitting the thermal quenching process of the free exciton PL peak. (C) 2003 American Institute of Physics.
Resumo:
Exciton-mediated energy transfer model in Er-doped silicon was presented. The emission intensity is related to optically active Er concentration, lifetime of excited Er3+ ion and spontaneous emission. The thermal quenching of the Er luminescence in Si is caused by thermal ionization of Er-bound exciton complex and nonradiative energy back-transfer processes, which correspond to the activation energy of 6.6 and 47.4 meV, respectively. Er doping in silicon introduces donor states, a large enhancement in the electrical activation of Er (up to two orders of magnitude) is obtained by co-implanting Er with O. It appears that the donor states are the gateway to the optically active Er. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Exciton-mediated energy transfer model in Er-doped silicon was presented. The emission intensity is related to optically active Er concentration, lifetime of excited Er3+ ion and spontaneous emission. The thermal quenching of the Er luminescence in Si is caused by thermal ionization of Er-bound exciton complex and nonradiative energy back-transfer processes, which correspond to the activation energy of 6.6 and 47.4 meV, respectively. Er doping in silicon introduces donor states, a large enhancement in the electrical activation of Er (up to two orders of magnitude) is obtained by co-implanting Er with O. It appears that the donor states are the gateway to the optically active Er. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Arrhenius law implicates that only those molecules which possess the internal energy greater than the activation energy E-a can react. However, the internal energy will not be proportional to the gas temperature if the specific heat ratio gamma and the gas constant R vary during chemical reaction processes. The varying gamma may affect significantly the chemical reaction rate calculated with the Arrhenius law under the constant gamma assumption, which has been widely accepted in detonation and combustion simulations for many years. In this paper, the roles of variable gamma and R in Arrhenius law applications are reconsidered, and their effects on the chemical reaction rate are demonstrated by simulating one-dimensional C-J and two-dimensional cellular detonations. A new overall one-step detonation model with variable gamma and R is proposed to improve the Arrhenius law. Numerical experiments demonstrate that this improved Arrhenius law works well in predicting detonation phenomena with the numerical results being in good agreement with experimental data.
Resumo:
Effects of flame stretch on the laminar burning velocities of near-limit fuel-lean methane/air flames have been studied experimentally using a microgravity environment to minimize the complications of buoyancy. Outwardly propagating spherical flames were employed to assess the sensitivities of the laminar burning velocity to flame stretch, represented by Markstein lengths, and the fundamental laminar burning velocities of unstretched flames. Resulting data were reported for methane/air mixtures at ambient temperature and pressure, over the specific range of equivalence ratio that extended from 0.512 (the microgravity flammability limit found in the combustion chamber) to 0.601. Present measurements of unstretched laminar burning velocities were in good agreement with the unique existing microgravity data set at all measured equivalence ratios. Most of previous 1-g experiments using a variety of experimental techniques, however, appeared to give significantly higher burning velocities than the microgravity results. Furthermore, the burning velocities predicted by three chemical reaction mechanisms, which have been tuned primarily under off-limit conditions, were also considerably higher than the present experimental data. Additional results of the present investigation were derived for the overall activation energy and corresponding Zeldovich numbers, and the variation of the global flame Lewis numbers with equivalence ratio. The implications of these results were discussed. 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
利用磁控溅射法制备了新型AgInSbTe相变薄膜,热处理前后的X射线衍射(XRD)表明了薄膜在热作用下从非晶态转变到晶态.通过非晶态薄膜粉末的示差扫描量热(DSC)实验测定了不同升温速率条件下的结晶峰温度,计算了粉末的摩尔结晶活化能、原子激活能和频率因子,从结晶活化能E可以判断出新型AgInSbTe相变薄膜具有较高的结晶速度,可以用于高速可擦重写相变光盘.
Resumo:
A new composition content quaternary-alloy-based phase change thin film, Sb-rich AgInSbTe, has been prepared by DC-magnetron sputtering on a K9 glass substrate. After the film has been subsequently annealed at 200degreesC for 30 min, it becomes a crystalline thin film. The diffraction peak of antimony (Sb) are observed by shallow (0.5 degree) x-ray diffraction in the quaternary alloy thin film. The analyses of the measurement from differential scanning calorimetry (DSC) show that the crystallization temperature of the phase change thin film is about 190degreesC and increases with the heating rate. By Kissinger plot, the activation energy for crystallization is determined to be 3.05eV. The reflectivity, refractive index and extinction coefficient of the crystalline and amorphous phase change thin films are presented. The optical absorption coefficient of the phase change thin films as a function of photon energy is obtained from the extinction coefficient. The optical band gaps of the amorphous and crystallization phase change thin films are 0.265eV and 1.127eV, respectively.
Resumo:
A new chelating ligand, 2-(2-(5-tert-butylisoxazol-3-yl)hydrazono)-N-(2,4-dimethylphenyl)-3-oxobutanamide (HL), and its four binuclear transition metal complexes, M-2(L)(2) (mu-OCH3)(2) [M = Ni(II), Co(II), Cu(II), Zn(II)], were synthesized using the procedure of diazotization, coupling and metallization. Their structures were postulated based on elemental analysis, H-1 NMR, MALDI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films of these complexes on K9 glass substrates were prepared using the spin-coating method and their absorption properties were evaluated. The thermal properties of the metal(II) complexes were investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC. Different thermodynamic and kinetic parameters namely activation energy (E
Resumo:
利用直流磁控反应溅射技术制备了氧气和氩气的分压比为5:100的NiOx薄膜。利用X射线衍射仪(XRD)、扫描电镜(SEM)、原子力显微镜(AFM)和光谱仪研究了热处理对薄膜的微观结构和光学性质的影响, 并对沉积态薄膜的粉末进行了热分析。沉积态的NiOx薄膜在262 ℃时开始分解, 导致NiOx薄膜的透过率增加和反射率降低。X射线衍射和示差扫描量热曲线(DSC)分析表明, 在热处理过程中并无物相的变化, 光学性质的变化是由于NiOx薄膜热分解引起薄膜表面形貌发生变化而引起的。通过Kissinger公式计算出
Resumo:
Two new hydrazone chelating ligands, 2-(2-(5-methylisoxazol-3-yl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione (HL1) and 2-(2-(5-tert-butylisoxazol-3-yl)hydrazono)-5,5-dimethylcyclohexane- 1,3-dione (HL2), and their nickel(II) and copper(II) complexes were synthesized using the procedure of diazotization, coupling and metallization. Their structures were postulated based on elemental analysis, H-1 NMR, ESI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films of these complexes on K9 glass substrates were prepared using spin-coating and their absorption properties were evaluated. The thermal properties of the metal(II) complexes were investigated by thermogravimetry (TG) and differential thermogravimetry (DTG). Different thermodynamic and kinetic parameters namely activation energy (E
Resumo:
研制了一种用于宽带波导放大器的掺铒碲钨酸盐激光玻璃材料,对玻璃热稳定性、光谱性质进行了表征,并在其上采用离子交换法制作了平面光波导.掺铒碲钨酸盐玻璃的转变温度Tg和析品开始温度Tx分别为377.1和488.5℃;荧光半高宽为52nm;应用McCumber理论,计算得出Er^3+离子4I13/2→^4I15/2跃迁在峰值波长1532nm的受激发射截面为0.91×10^-20cm^2.不同条件下制作了在632.8nm处多模的平面光波导,通过拟合得到Ag^+离子在300℃的有效扩散系数De为2.82×10^-1
Resumo:
Crystallization behavior of the glass system AlF3-MgF2-CaF2-SrF2-BaF2-YF3-TeO2 (AMCSBY-TeO2) Was studied by the nonisothermal method using differential thermal analysis. The activation energy E and Avrami exponent n were determined by nonisothermal method. It is found that the value of E varies with increasing TeO2 and reaches a minimum at 10 mol fraction TeO2, while n decreases from 3.65 to 1.78 with the addition of TeO2. X-ray diffraction shows that Ba2Te3O8, MgTe2O5, and SrTeO3 phase formed when the glasses were reheated. The addition of TeO2 changes the crystallization mechanism and improves the stability of the fluoroaluminate glass.
Resumo:
A new Er(3+)/Yb(3+) co-doped phosphate glass has been prepared, which exhibits good chemical durability and spectralproperties. Planar graded index waveguides have been fabricated in the glass by (Ag+)-Na(+) ion exchange in a mixed melt of silver nitrate and potassium nitrate. Ion exchange is carried out by varying the process parameters such as temperature, diffusion time, and molten salt compositions. The diffusion parameters, diffusion coefficients, and activation energy are determined by the guidelines of fabricated waveguides, which are determined by the input prism coupling technique.
Resumo:
National Nature Science Foundation of China (Grant No. 60607015)