76 resultados para 611.91022576
Resumo:
An Nd:glass laser pulse (18 ns, 1.38 J) is focused in a tiny area of about 100-mum diam under ambient conditions to produce micro-shock waves. The laser is focused above a planar surface with a typical standoff distance of about 4 mm, The laser energy is focused inside a supersonic circular jet of carbon dioxide gas produced by a nozzle with internal diameter of 2.9 mm and external diameter of 8 mm, Nominal value of the Mach number of the jet is around 2 with the corresponding pressure ratio of 7.5 (stagnation pressure/static pressure at the exit of the nozzle), The interaction process of the micro-shock wave generated inside the supersonic jet with the plane wall is investigated using double-pulse holographic interferometry. A strong surface vortex field with subsequent generation of a side jet propagating outward along the plane wail is observed. The interaction of the micro-shock wave with the cellular structure of the supersonic jet does not seem to influence the near surface features of the flowfield. The development of the coherent structures near the nozzle exit due to the upstream propagation of pressure waves seems to be affected by the outward propagating micro-shock wave. Mach reflection is observed when the micro-shock wave interacts with the plane wall at a standoff distance of 4 mm, The Mach stem is slightly deflected, indicating strong boundary-layer and viscous effects near the wall. The interaction process is also simulated numerically using an axisymmetric transient laminar Navier-Stokes solver. Qualitative agreement between experimental and numerical results is good.
Resumo:
Anodic bonding with thin films of metal or alloy as an intermediate layer, finds increasing applications in micro/nanoelectromechanical systems. At the bonding temperature of 350 degrees C, voltage of 400 V, and 30 min duration, the anodic bonding is completed between Pyrex glass and crystalline silicon coated with an aluminum thin film with a thickness comprised between 50 and 230 nm. Sodium-depleted layers and dendritic nanostructures were observed in Pyrex 7740 glass adjacent to the bonding interface. The sodium depletion width does not increase remarkably with the thickness of aluminum film. The dendritic nanostructures result from aluminum diffusion into the Pyrex glass. This experimental research is expected to enhance the understanding of how the depletion layer and dendritic nanostructures affect the quality of anodic bonding. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We propose and analyse a new model of thermocapillary convection with evaporation in a cavity subjected to horizontal temperature gradient, rather than the previously studied model without evaporation. The pure liquid layer with a top free surface in contact with its own vapour is considered in microgravity condition. The computing programme developed for simulating this model integrates the two-dimensional, time-dependent Navier-Stokes equations and energy equation by a second-order accurate projection method. We focus on the coupling of evaporation and thermocapillary convection by investigating the influence of evaporation Biot number and Marangoni number on the interfacial mass and heat transfer. Three different regimes of the coupling mechanisms are found and explained from our numerical results.
Resumo:
本文用Laplace-Fourier变换方法研究两层流体中的瞬变波,分析了近似色散关系,讨论了不同模式波的主次关系,导出了由初始位移、大气扰动、水下爆炸,地震等因素所激励的表面波和内波的波形及其远场的渐近表达式。
Resumo:
<正> 简化N-S方程组具有抛物-双曲方程组的特性,对定常情况可用向前推进的计算方法,要比数值求解椭圆型完全N-S方程组简单得多;求解简化N-S方程组能够同时算出无粘外部流和粘性边界层流,理论上要比先算无粘流、然后再算粘性边界层流的常规方法
Resumo:
在旋转流动系统中,由于柯氏力的作用,地形对流动的影响常呈现出与惯性系中很不相同的特点,近年来在地球物理流体力学研究中受到很大重视。 本文介绍了作者们在力学所旋转实验台上,针对近海洋流问题所作的一些旋转流体中地形影响的初步实验研究,在一扇形容器中用源汇法模拟了洋流的陆架地形绕流,过海脊流,绕岛屿以及沿径向有变深度地形的环流,这些初步的定性的结果表明,均质旋转流动系统确能反映大尺度旋转流动的某些动力学特征。
Resumo:
Anodic bonding with thin films of metal or alloy as an intermediate layer, finds increasing applications in micro/nanoelectromechanical systems. At the bonding temperature of 350 degrees C, voltage of 400 V, and 30 min duration, the anodic bonding is completed between Pyrex glass and crystalline silicon coated with an aluminum thin film with a thickness comprised between 50 and 230 nm. Sodium-depleted layers and dendritic nanostructures were observed in Pyrex 7740 glass adjacent to the bonding interface. The sodium depletion width does not increase remarkably with the thickness of aluminum film. The dendritic nanostructures result from aluminum diffusion into the Pyrex glass. This experimental research is expected to enhance the understanding of how the depletion layer and dendritic nanostructures affect the quality of anodic bonding. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coupling a single-mode laser diode with 200 mW to a single-mode fiber (SMF) through an orthonormal aspherical cylindrical lens and a GRIN lens for the intersatellite optical communication system is proposed and demonstrated. We experimentally studied how the coupling efficiency changes with the SMF's position displacement and axial angle variation, and obtained 80 mW output power at the end of the SMF, which shows that the coupling units have satisfied the designed request. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
采用蜗轮蜗杆驱动调整机构、使用同步带安装标准镜片方式、正交十字导轨支撑等可有效提高光学精密检测系统中大口径干涉仪装置的镜面面形质量、稳定性和调节准确度,从理论上介绍了蜗轮蜗杆驱动机构等设计原理及其基本公式,并从实验上验证了这些机构对光学精密检测系统稳定性的影响.
Resumo:
为了实现光参变放大抽运光源高稳定输出的目的。通过对倍频过程的数值模拟分析,提出倍频中存在“稳定区”的概念,在基频光强一定的条件下(小于倍频晶体破坏阈值),通过非共线双程倍频的方式或串联倍频的方式可有效延长倍频晶体的有效作用长度,保证倍频工作区能够被控制在“稳定区”内,从而实现高稳定高转换效率的倍频输出。实验数据验证了这一结论,实验中,利用非共线双程倍频的方式使得倍频工作区在“稳定区”内,对波动±5.7%的1064nm高斯脉冲基频光,倍频光波动小于±2%,脉冲形状为高阶高斯脉冲,转换效率大于70%,实验结果
Resumo:
提出了一种利用总积分散射(TIS)测量K9玻璃基片表面散射和体散射的实验方法。首先采用磁控溅射技术在基片表面沉积厚度为几十nm的金属Ag薄膜,然后将基片的表面和体区分开考虑,通过TIS测得了基片上下表面的均方根粗糙度。进而求得基片的总散射和表面散射.最后计算得到了体散射。分别利用TIS和原子力显微镜(AFM)测量了3个样品上表面所镀Ag膜的均方根粗糙度.两种方法所得的均方根粗糙度的数值相差不明显,差值分别为0.08,0.11和0.09nm,表明TIS和AFM的测量结果相一致。利用该方法测得3块K9玻璃基片