44 resultados para Streptavidin Monolayer

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the investigation of biotin-streptavidin binding interactions using microcantilever sensors. A symmetric cantilever construction is employed to minimize the effects of thermal drift and the control of surface chemistry on the backside of the cantilever is demonstrated to reduce the effects of non-specific binding interactions on the cantilever. Three structurally different biotin modified cantilever surfaces are used as a model system to study the binding interaction with streptavidin. The cantilever response to the binding of streptavidin on these biotin sensing monolayers is compared. The lowest detection limit of streptavidin using biotin-HPDP is found to be between 1 and 10 nM limited by the optical measurement setup. Surface characterization using quartz crystal microbalance (QCM) and high-resolution atomic force microscope (AFM) is used to benchmark the cantilever sensor response. In addition, the QCM and AFM studies reveal that the surface density of bound streptavidin on biotin modified surfaces was low, thereby implying that effects other than steric hindrance are responsible for defining cantilever response. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron tunnelling through semiconductor tunnel barriers is exponentially sensitive to the thickness of the barrier layer, and in the most common system, the AlAs tunnel barrier in GaAs, a one monolayer variation in thickness results in a 300% variation in the tunnelling current for a fixed bias voltage. We use this degree of sensitivity to demonstrate that the level of control at 0.06 monolayer can be achieved in the growth by molecular beam epitaxy, and the geometrical variation of layer thickness across a wafer at the 0.01 monolayer level can be detected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The acoustic response of conventional mechanical oscillators, such as a piezoelectric crystal, is predominantly harmonic at modest amplitudes. However, here, we observe from the electrical response that significant motional anharmonicity is introduced in the presence of attached analyte. Experiments were conducted with streptavidin-coated polystyrene microbeads of various sizes attached to a quartz crystal resonator via specific and nonspecific molecular tethers in liquid. Quantitative analysis reveals that the deviation of odd Fourier harmonics of the response caused by introduction of microbeads as a function of oscillation amplitude presents a unique signature of the molecular tether. Hence, the described anharmonic detection technique (ADT) based on this function allows screening of biomolecules and provides an additional level of selectivity in receptor-based detection that is often associated with nonspecific interactions. We also propose methods to extract mechanical force-extension characteristics of the molecular tether and activation energy using this technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of the Quartz Crystal Microbalance (QCM) for biochemical sensing is well known. However, utilizing the nonlinear response of the QCM at elevated amplitudes has received sporadic attention. This study presents results for QCM-analyte interaction that provide insight into the nonlinear dynamics of the QCM with attached analyte. In particular, interactions of the QCM with polystyrene microbeads physisorbed via self-assembled monolayer (SAM) were studied through experiments and modelling. It was found that the response of the QCM coupled to these surface adsorbents is anharmonic even at low oscillation amplitudes and that the nonlinear signals from such interactions are much higher than those for bare quartz. Therefore, these signals can potentially be used as sensitive signatures of adsorbents and their kinetics on the surface. ©2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-temperature (∼450 °C), scalable chemical vapor deposition of predominantly monolayer (74%) graphene films with an average D/G peak ratio of 0.24 and domain sizes in excess of 220 μm(2) is demonstrated via the design of alloy catalysts. The admixture of Au to polycrystalline Ni allows a controlled decrease in graphene nucleation density, highlighting the role of step edges. In situ, time-, and depth-resolved X-ray photoelectron spectroscopy and X-ray diffraction reveal the role of subsurface C species and allow a coherent model for graphene formation to be devised.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-hydrogenated tetrahedral amorphous carbon (ta-C) has shown superior field emission characteristics. The understanding of the emission mechanism has been hindered by the lack of any directly measured data on the band offsets between ta-C and Si. In this paper results from direct in situ X-ray photoemission spectroscopy (XPS) measurements of the band-offset between ta-C and Si are reported. The measurements were carried out using a filtered cathodic vacuum arc (FCVA) deposition system attached directly to an ultra-high vacuum (UHV) XPS chamber via a load lock chamber. Repeated XPS measurements were carried out after monolayer depositions on in situ cleaned Si substrates. The total film thickness for each set of measurements was approximately 5 nm. Analysis of the data from undoped ta-C on n and p Si show the unexpected result that the conduction band barrier between Si and ta-C remains around 1.0 eV, but that the valence band barrier changes from 0.7 to 0.0 eV. The band line up derived from these barriers suggests that the Fermi level in the ta-C lies 0.3 eV above the valence band on both p and n+Si. The heterojunction barriers when ta-C is doped with nitrogen are also presented. The implications of the heterojunction energy barrier heights for field emission from ta-C are discussed.