10 resultados para Static stress change

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comprehensive study of the stress release and structural changes caused by postdeposition thermal annealing of tetrahedral amorphous carbon (ta-C) on Si has been carried out. Complete stress relief occurs at 600-700°C and is accompanied by minimal structural modifications, as indicated by electron energy loss spectroscopy, Raman spectroscopy, and optical gap measurements. Further annealing in vacuum converts sp3 sites to sp2 with a drastic change occurring after 1100°C. The field emitting behavior is substantially retained up to the complete stress relief, confirming that ta-C is a robust emitting material. © 1999 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical bias and light stressing followed by natural recovery of amorphous hafnium-indium-zinc-oxide (HIZO) thin film transistors with a silicon oxide/nitride dielectric stack reveals defect density changes, charge trapping and persistent photoconductivity (PPC). In the absence of light, the polarity of bias stress controls the magnitude and direction of the threshold voltage shift (Δ VT), while under light stress, VT consistently shifts negatively. In all cases, there was no significant change in field-effect mobility. Light stress gives rise to a PPC with wavelength-dependent recovery on time scale of days. We observe that the PPC becomes more pronounced at shorter wavelengths. © 2010 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skin biothermomechanics is highly interdisciplinary, involving bioheat transfer, burn damage, biomechanics, and physiology. Characterization of the thermomechanical behavior of skin tissue is of great importance and can contribute to a variety of medical applications. However, few quantitative studies have been conducted on the thermally-dependent mechanical properties of skin tissue. The aim of the present study is to experimentally examine the thermally-induced change in the relaxation behavior of skin tissue in both hyperthermal and hypothermic ranges. The results show that temperature has great influence on the stress-relaxation behavior of skin tissue under both hyperthermal and hypothermic temperatures; the quantitative relationship that has been found between temperature and the viscoelastic parameter (the elastic fraction or fractional energy dissipation) was temperature dependent, with greatest dissipation at high temperature levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is becoming a serious issue for the construction industry, since the time scales at which climate change takes place can be expected to show a true impact on the thermal performance of buildings and HVAC systems. In predicting this future building performance by means of building simulation, the underlying assumptions regarding thermal comfort conditions and the related heating, ventilating and air conditioning (HVAC) control set points become important. This article studies the thermal performance of a reference office building with mixedmode ventilation in the UK, using static and adaptive thermal approaches, for a series of time horizons (2020, 2050 and 2080). Results demonstrate the importance of the implementation of adaptive thermal comfort models, and underpin the case for its use in climate change impact studies. Adaptive thermal comfort can also be used by building designers to make buildings more resilient towards change. © 2010 International Building Performance Simulation Association (IBPSA).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Managing change can be challenging due to the high levels of interdependency in concurrent engineering processes. A key activity in engineering change management is propagation analysis, which can be supported using the change prediction method. In common with most other change prediction approaches, the change prediction method has three important limitations: L1: it depends on highly subjective input data; L2: it is capable of modelling 'generalised cases' only and cannot be; customised to assess specific changes; and L3: the input data are static, and thus, guidance does not reflect changes in the design. This article contributes to resolving these limitations by incorporating interface information into the change prediction method. The enhanced method is illustrated using an example based on a flight simulator. © The Author(s) 2013.