19 resultados para RELIABILITY ANALYSIS
em Cambridge University Engineering Department Publications Database
Resumo:
As part of the investigations into a surgical incident involving the accidental retention inside a patient's venous system of a guide wire for central venous catheterisation (CVC), the Human Error Assessment and Reduction Technique (HEART) was used to examine the potential for further occurrences. It was found to be time-efficient and to yield plausible probabilities of human error, although its use in healthcare has challenges, suggesting adaptation would be beneficial.
Resumo:
The design and construction of deep excavations in urban environment is often governed by serviceability limit state related to the risk of damage to adjacent buildings. In current practice, the assessment of excavation-induced building damage has focused on a deterministic approach. This paper presents a component/system reliability analysis framework to assess the probability that specified threshold design criteria for multiple serviceability limit states are exceeded. A recently developed Bayesian probabilistic framework is used to update the predictions of ground movements in the later stages of excavation based on the recorded deformation measurements. An example is presented to show how the serviceability performance for excavation problems can be assessed based on the component/system reliability analysis. © 2011 ASCE.
Resumo:
Recently, it has been shown that improved wireless communication coverage can be achieved by employing distributed antenna system (DAS). The DAS RFID system is based on a novel technique whereby two or more spatially separated transmit and receive antennas are used to enable greatly enhanced tag detection performance over longer distances using antenna diversity combined with frequency and phase hopping. In this paper, we present a detection reliability evaluation of the DAS RFID in a typical lab environment. We conduct an extensive experimental analysis of passive RFID tag detection with different locations and orientations. The tag received signal strengths corresponding to various tag locations on one of the six different sides of a cube, and for different reader transmit power are collected and analyzed in this study.
Resumo:
This book presents the proceedings of the international conference on Contemporary Ergonomics and Human Factors 2013.
Resumo:
Current design codes for floating offshore structures are based on measures of short-term reliability. That is, a design storm is selected via an extreme value analysis of the environmental conditions and the reliability of the vessel in that design storm is computed. Although this approach yields valuable information on the vessel motions, it does not produce a statistically rigorous assessment of the lifetime probability of failure. An alternative approach is to perform a long-term reliability analysis in which consideration is taken of all sea states potentially encountered by the vessel during the design life. Although permitted as a design approach in current design codes, the associated computational expense generally prevents its use in practice. A new efficient approach to long-term reliability analysis is presented here, the results of which are compared with a traditional short-term analysis for the surge motion of a representative moored FPSO in head seas. This serves to illustrate the failure probabilities actually embedded within current design code methods, and the way in which design methods might be adapted to achieve a specified target safety level.