6 resultados para Low vision

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vision based tracking can provide the spatial location of project related entities such as equipment, workers, and materials in a large-scale congested construction site. It tracks entities in a video stream by inferring their motion. To initiate the process, it is required to determine the pixel areas of the entities to be tracked in the following consecutive video frames. For the purpose of fully automating the process, this paper presents an automated way of initializing trackers using Semantic Texton Forests (STFs) method. STFs method performs simultaneously the segmentation of the image and the classification of the segments based on the low-level semantic information and the context information. In this paper, STFs method is tested in the case of wheel loaders recognition. In the experiments, wheel loaders are further divided into several parts such as wheels and body parts to help learn the context information. The results show 79% accuracy of recognizing the pixel areas of the wheel loader. These results signify that STFs method has the potential to automate the initialization process of vision based tracking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The existing machine vision-based 3D reconstruction software programs provide a promising low-cost and in some cases automatic solution for infrastructure as-built documentation. However in several steps of the reconstruction process, they only rely on detecting and matching corner-like features in multiple views of a scene. Therefore, in infrastructure scenes which include uniform materials and poorly textured surfaces, these programs fail with high probabilities due to lack of feature points. Moreover, except few programs that generate dense 3D models through significantly time-consuming algorithms, most of them only provide a sparse reconstruction which does not necessarily include required points such as corners or edges; hence these points have to be manually matched across different views that could make the process considerably laborious. To address these limitations, this paper presents a video-based as-built documentation method that automatically builds detailed 3D maps of a scene by aligning edge points between video frames. Compared to corner-like features, edge points are far more plentiful even in untextured scenes and often carry important semantic associations. The method has been tested for poorly textured infrastructure scenes and the results indicate that a combination of edge and corner-like features would allow dealing with a broader range of scenes.