16 resultados para BFRP rods

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In fibre reinforced polymer (FRP) prestressed concrete applications, an FRP tendon must sustain high axial tensile stresses and, if cracks occur, additional dowel forces. The tendon may also be exposed to solutions and so the combined axial-shear stress performance after long-term environmental exposure is important. Experiments were conducted to investigate the combined axial-shear stress failure envelope for unidirectional carbon FRP tendons which had been exposed to either water, salt water or concrete pore solution at 60 °C for approximately 18 months. The underlying load resisting mechanisms were found to depend on the loading configuration, restraint effects and the initial stress state. When saturated, CFRP tendons are likely to exhibit a reduced shear stiffness. However, the ultimate limit state appeared to be fibre-dominated and was therefore less susceptible to reductions due to solution uptake effects. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by applications such as gecko-inspired adhesives and microdevices featuring slender rod-like bodies, there has been an increase in interest in the deformed shapes of elastic rods adhering to rigid surfaces. A central issue in analyses of the rod-based models for these systems is the stability of the predicted equilibrium configurations. Such analyses can be complicated by the presence of intrinsic curvatures induced by fabrication processes. The results in the present paper are used to show how this curvature can lead to shear-induced bifurcations and instabilities. To characterize potential instabilities, a new set of necessary conditions for stability are employed which cater to the possible combinations of buckling and delaminating instabilities. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The seismic behaviour of anchored sheet pile walls is a complex soil-structure interaction problem. Damaged sheet pile walls are very expensive to repair and their seismic behaviour needs to be investigated in order to understand their possible mechanisms of failure. The research described in this paper involves both centrifuge testing and Finite Element (FE) analyses aimed at investigating the seismic behaviour of an anchored sheet pile wall in dry sand. The model wall is tied to the backfill with two tie rods connected to an anchor beam. The accelerations of the sheet pile wall, the anchor beam and the soil around the wall were measured using miniature piezoelectric accelerometers. The displacement at the tip of the wall was also measured. Stain gauges at five different locations on the wall were used to measure the bending moments induced in the the wall. The anchor forces in the tie rods were also measured using load cells. The results from the centrifuge tests were compared with 2-D, plane strain FE analyses conducted using DIANA-SWANDYNE II and the observed seismic behaviour was explained in the light of these findings. © 2011 Taylor & Francis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Turbulence statistics have been measured immediately downstream of a regular grid made of round rods with rod spacing M. 2D-2C PIV was used to analyse a measurement area of 14M x 4M in the down and cross-stream directions respectively. The relevant Reynolds number span the range Re M = U ∞M/ν = 5 500 - 16 500. The Reynolds shear stresses recorded on two parallel measurement planes differently located relative to the grid exhibit significant discrepancies over the first 5M, but have completely homogenised in the cross-stream direction by x/M = 7. The downstream evolution of the two-point velocity correlation functions shows a progressive loss of coherence and a clear trend towards the expected isotropic behavior. The same conclusions apply to measurements taken in the wake of another regular grid made of square rods. Changes in the vortex shedding pattern from the grid were observed at the lowest Reynolds number, with two of the four rod wakes captured shedding in phase with each other but in anti-phase with a third one. The impact of this early flow coherence on the turbulence statistics did not persist due to the homogenisation process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear power generation offers a reliable, low-impact and large-scale alternative to fossil fuels. However, concerns exist over the safety and sustainability of this method of power production, and it remains unpopular with some governments and pressure groups throughout the world. Fast thorium fuelled accelerator-driven sub-critical reactors (ADSRs) offer a possible route to providing further re-assurance regarding these concerns on account of their properties of enhanced safety through sub-critical operation combined with reduced actinide waste production from the thorium fuel source. The appropriate sub-critical margin at which these reactors should operate is the subject of continued debate. Commercial interests favour a small sub-critical margin in order to minimise the size of the accelerator needed for a given power output, whilst enhanced safety would be better satisfied through larger sub-critical margins to further minimise the possibility of a criticality excursion. Against this background, this paper examines some of the issues affecting reactor safety inherent within thorium fuel sources resulting from the essential Th90232→Th90233→Pa91233→U92233 breeding chain. Differences in the decay half-lives and fission and capture cross-sections of 233Pa and 233U can result in significant changes in the reactivity of the fuel following changes in the reactor power. Reactor operation is represented using a homogeneous lumped fast reactor model that can simulate the evolution of actinides and reactivity variations to first-order accuracy. The reactivity of the fuel is shown to increase significantly following a loss of power to the accelerator. Where the sub-critical operating margins are small this can result in a criticality excursion unless some form of additional intervention is made, for example through the insertion of control rods. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using variational methods, we establish conditions for the nonlinear stability of adhesive states between an elastica and a rigid halfspace. The treatment produces coupled criteria for adhesion and buckling instabilities by exploiting classical techniques from Legendre and Jacobi. Three examples that arise in a broad range of engineered systems, from microelectronics to biologically inspired fiber array adhesion, are used to illuminate the stability criteria. The first example illustrates buckling instabilities in adhered rods, while the second shows the instability of a peeling process and the third illustrates the stability of a shear-induced adhesion. The latter examples can also be used to explain how microfiber array adhesives can be activated by shearing and deactivated by peeling. The nonlinear stability criteria developed in this paper are also compared to other treatments. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Achieving higher particles energies and beam powers have long been the main focus of research in accelerator technology. Since Accelerator Driven Subcritical Reactors (ADSRs) have become the subject of increasing interest, accelerator reliability and modes of operation have become important matters that require further research and development in order to accommodate the engineering and economic needs of ADSRs. This paper focuses on neutronic and thermo-mechanical analyses of accelerator-induced transients in an ADSR. Such transients fall into three main categories: beam interruptions (trips), pulsed-beam operation, and beam overpower. The concept of a multiple-target ADSR is shown to increase system reliability and to mitigate the negative effects of beam interruptions, such as thermal cyclic fatigue in the fuel cladding and the huge financial cost of total power loss. This work also demonstrates the effectiveness of the temperature-to-reactivity feedback mechanisms in ADSRs. A comparison of shutdown mechanisms using control rods and beam cut-off highlights the intrinsic safety features of ADSRs. It is evident that the presence of control rods is crucial in an industrial-scale ADSR. This paper also proposes a method to monitor core reactivity online using the repetitive pattern of beam current fluctuations in a pulsed-beam operation mode. Results were produced using PTS-ADS, a computer code developed specifically to study the dynamic neutronic and thermal responses to beam transients in subcritical reactor systems. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid nanostructured materials can exhibit different properties than their constituent components, and can enable decoupled engineering of energy conversion and transport functions. Novel means of building hybrid assemblies of crystalline C 60 and carbon nanotubes (CNTs) are presented, wherein aligned CNT films direct the crystallization and orientation of C 60 rods from solution. In these hybrid films, the C 60 rods are oriented parallel to the direction of the CNTs throughout the thickness of the film. High-resolution imaging shows that the crystals incorporate CNTs during growth, yet grazing-incidence X-ray diffraction (GIXD) shows that the crystal structure of the C 60 rods is not perturbed by the CNTs. Growth kinetics of the C 60 rods are enhanced 8-fold on CNTs compared to bare Si, emphasizing the importance of the aligned, porous morphology of the CNT films as well as the selective surface interactions between C 60 and CNTs. Finally, it is shown how hybrid C 60-CNT films can be integrated electrically and employed as UV detectors with a high photoconductive gain and a responsivity of 10 5 A W -1 at low biases (± 0.5 V). The finding that CNTs can induce rapid, directional crystallization of molecules from solution may have broader implications to the science and applications of crystal growth, such as for inorganic nanocrystals, proteins, and synthetic polymers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shortly after the loading of a pressurized water reactor (PWR) core, the axial power distribution in fresh fuel has already attained the characteristic, almost flat shape, typical of burned fuel. At beginning of cycle (BOC), however, the axial distribution is centrally peaked. In assemblies hosting uniform burnable boron rods, this BOC peaking is even more pronounced. A reduction in the axial peaking is today often achieved by shortening the burnable boron rods by some 30 cm at each edge. It is shown that a two-zone grading of the boron rod leads, in a representative PWR cycle, to a reduction of the hot-spot temperature of approximately 70 °C, compared with the nongraded case. However, with a proper three-zone grading of the boron rod, an additional 20 °C may be cut off the hot-spot temperature. Further, with a slightly skewed application of this three-zone grading, an additional 50 °C may be cut off. The representative PWR cycle studied was cycle 11 of the Indian Point 2 station, with a simplification in the number of fuel types and in the burnup distribution. The analysis was based on a complete three-dimensional burnup calculation. The code system was ELCOS, with BOXER as an assembly code for the generation of burnup-dependent cross sections and SILWER as a three-dimensional core code with thermal-hydraulic feedback.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the effects of cooling time prior to reprocessing spent LWR fuel has on the reactor physics characteristics of a PWR fully loaded with homogeneously mixed U-Pu or U-TRU oxide (MOX) fuel is examined. A reactor physics analysis was completed using the CASM04e code. A void reactivity feedback coefficient analysis was also completed for an infinite lattice of fresh fuel assemblies. Some useful conclusions can be made regarding the effect that cooling time prior to reprocessing spent LWR fuel has on a closed homogeneous MOX fuel cycle. The computational analysis shows that it is more neutronically efficient to reprocess cooled spent fuel into homogeneous MOX fuel rods earlier rather than later as the fissile fuel content decreases with time. Also, the number of spent fuel rods needed to fabricate one MOX fuel rod increases as cooling time increases. In the case of TRU MOX fuel, with time, there is an economic tradeoff between fuel handling difficulty and higher throughput of fuel to be reprocessed. The void coefficient analysis shows that the void coefficient becomes progressively more restrictive on fuel Pu content with increasing spent fuel cooling time before reprocessing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell monolayers line most of the surfaces and cavities in the human body. During development and normal physiology, monolayers sustain, detect and generate mechanical stresses, yet little is known about their mechanical properties. We describe a cell culture and mechanical testing protocol for generating freely suspended cell monolayers and examining their mechanical and biological response to uniaxial stretch. Cells are cultured on temporary collagen scaffolds polymerized between two parallel glass capillaries. Once cells form a monolayer covering the collagen and the capillaries, the scaffold is removed with collagenase, leaving the monolayer suspended between the test rods. The suspended monolayers are subjected to stretching by prying the capillaries apart with a micromanipulator. The applied force can be measured for the characterization of monolayer mechanics. Monolayers can be imaged with standard optical microscopy to examine changes in cell morphology and subcellular organization concomitant with stretch. The entire preparation and testing protocol requires 3-4 d.