11 resultados para Arrow in-flight characteristics
em Cambridge University Engineering Department Publications Database
Resumo:
Most behavioral tasks have time constraints for successful completion, such as catching a ball in flight. Many of these tasks require trading off the time allocated to perception and action, especially when only one of the two is possible at any time. In general, the longer we perceive, the smaller the uncertainty in perceptual estimates. However, a longer perception phase leaves less time for action, which results in less precise movements. Here we examine subjects catching a virtual ball. Critically, as soon as subjects began to move, the ball became invisible. We study how subjects trade-off sensory and movement uncertainty by deciding when to initiate their actions. We formulate this task in a probabilistic framework and show that subjects' decisions when to start moving are statistically near optimal given their individual sensory and motor uncertainties. Moreover, we accurately predict individual subject's task performance. Thus we show that subjects in a natural task are quantitatively aware of how sensory and motor variability depend on time and act so as to minimize overall task variability.
Resumo:
Landslides occur both onshore and offshore, however little attention has been given to offshore landslides (submarine landslides). The unique characteristics of submarine landslides include large mass movements and long travel distances at very gentle slopes. Submarine landslides have significant impacts and consequences on offshore and coastal facilities. This paper presents data from a series of centrifuge tests simulating submarine landslide flows on a very gentle slope. Experiments were conducted at different gravity levels to understand the scaling laws involved in simulating submarine landslide flows through centrifuge modelling. The slope was instrumented with miniature sensors for measurements of pore pressure beneath the flow. A series of digital cameras were used to capture the flow in flight. The results provide a better understanding of the scaling laws that needs to be adopted for centrifuge experiments involving submarine landslide flows and gives an insight into the flow mechanisms. © 2010 Taylor & Francis Group, London.
Resumo:
The change in acoustic characteristics in personal computers to console gaming and home entertainment systems with the change in the Graphics Processing Unit (GPU), is presented. The tests are carried out using identical configurations of the software and system hardware. The prime components of the hardware used in the project are central processing unit, motherboard, hard disc drive, memory, power supply, optical drive, and additional cooling system. The results from the measurements taken for each GPU tested are analyzed and compared. The test results are obtained using a photo tachometer and reflective tape adhered to one particular fan blade. The test shows that loudness is a psychoacoustic metric developed by Zwicker and Fastal that aims to quantify how loud a sound is perceived as compared to a standard sound. The acoustic experiment reveals that the inherent noise generation mechanism increases with the increase of the complexity of the cooling solution.
Resumo:
This study is the first step in the psychoacoustic exploration of perceptual differences between the sounds of different violins. A method was used which enabled the same performance to be replayed on different "virtual violins," so that the relationships between acoustical characteristics of violins and perceived qualities could be explored. Recordings of real performances were made using a bridge-mounted force transducer, giving an accurate representation of the signal from the violin string. These were then played through filters corresponding to the admittance curves of different violins. Initially, limits of listener performance in detecting changes in acoustical characteristics were characterized. These consisted of shifts in frequency or increases in amplitude of single modes or frequency bands that have been proposed previously to be significant in the perception of violin sound quality. Thresholds were significantly lower for musically trained than for nontrained subjects but were not significantly affected by the violin used as a baseline. Thresholds for the musicians typically ranged from 3 to 6 dB for amplitude changes and 1.5%-20% for frequency changes. interpretation of the results using excitation patterns showed that thresholds for the best subjects were quite well predicted by a multichannel model based on optimal processing. (c) 2007 Acoustical Society of America.
Resumo:
Within the low Reynolds number regime at which birds and small air vehicles operate (Re=15,000-500,000), flow is beset with laminar separation bubbles and bubble burst which can lead to loss of lift and early onset of stall. Recent video footage of an eagle's wings in flight reveals an inconspicuous wing feature: the sudden deployment of a row of feathers from the lower surface of the wing to create a leading edge flap. An understanding of the aerodynamic function of this flap has been developed through a series of low speed wind tunnel tests performed on an Eppler E423 aerofoil. Experiments took place at Reynolds numbers ranging from 40000 to 140000 and angles of attack up to 30°. In the lower range of tested Reynolds numbers, application of the flap was found to substantially enhance aerofoil performance by augmenting the lift and limiting the drag at certain incidences. The leading edge flap was determined to act as a transition device at low Reynolds numbers, preventing the formation of separation bubbles and consequently decreasing the speed at which stall occurs during landing and manoeuvring.
Resumo:
Here we present our on-going efforts toward the development of stable ballasted carbon nanotube-based field emitters employing hydrothermally synthesized zinc oxide nanowires and thin film silicon-on-insulator substrates. The semiconducting channel in each controllably limits the emission current thereby preventing detrimental burn-out of individual emitters that occurs due to unavoidable statistical variability in emitter characteristics, particularly in their length. Fabrication details and emitter characterization are discussed in addition to their field emission performance. The development of a beam steerable triode electron emitter formed from hexagonal carbon nanotube arrays with central focusing nanotube electrodes, is also described. Numerical ab-initio simulations are presented to account for the empirical emission characteristics. Our engineered ballasted emitters have shown some of the lowest reported lifetime variations (< 0.7%) with on-times of < 1 ms, making them ideally-suited for next-generation displays, environmental lighting and portable x-rays sources. © 2012 SPIE.