2 resultados para Arrow in-flight characteristics
em CaltechTHESIS
Resumo:
The cross sections for the two antiproton-proton annihilation-in-flight modes,
ˉp + p → π+ + π-
ˉp + p → k+ + k-
were measured for fifteen laboratory antiproton beam momenta ranging from 0.72 to 2.62 GeV/c. No magnets were used to determine the charges in the final state. As a result, the angular distributions were obtained in the form [dσ/dΩ (ΘC.M.) + dσ/dΩ (π – ΘC.M.)] for 45 ≲ ΘC.M. ≲ 135°.
A hodoscope-counter system was used to discriminate against events with final states having more than two particles and antiproton-proton elastic scattering events. One spark chamber was used to record the track of each of the two charged final particles. A total of about 40,000 pictures were taken. The events were analyzed by measuring the laboratory angle of the track in each chamber. The value of the square of the mass of the final particles was calculated for each event assuming the reaction
ˉp + p → a pair of particles with equal masses.
About 20,000 events were found to be either annihilation into π ±-pair or k ±-pair events. The two different charged meson pair modes were also distinctly separated.
The average differential cross section of ˉp + p → π+ + π- varied from ~ 25 µb/sr at antiproton beam momentum 0.72 GeV/c (total energy in center-of-mass system, √s = 2.0 GeV) to ~ 2 µb/sr at beam momentum 2.62 GeV/c (√s = 2.64 GeV). The most striking feature in the angular distribution was a peak at ΘC.M. = 90° (cos ΘC.M. = 0) which increased with √s and reached a maximum at √s ~ 2.1 GeV (beam momentum ~ 1.1 GeV/c). Then it diminished and seemed to disappear completely at √s ~ 2.5 GeV (beam momentum ~ 2.13 GeV/c). A valley in the angular distribution occurred at cos ΘC.M. ≈ 0.4. The differential cross section then increased as cos ΘC.M. approached 1.
The average differential cross section for ˉp + p → k+ + k- was about one third of that of the π±-pair mode throughout the energy range of this experiment. At the lower energies, the angular distribution, unlike that of the π±-pair mode, was quite isotropic. However, a peak at ΘC.M. = 90° seemed to develop at √s ~ 2.37 GeV (antiproton beam momentum ~ 1.82 GeV/c). No observable change was seen at that energy in the π±-pair cross section.
The possible connection of these features with the observed meson resonances at 2.2 GeV and 2.38 GeV, and its implications, were discussed.
Resumo:
The 0.2% experimental accuracy of the 1968 Beers and Hughes measurement of the annihilation lifetime of ortho-positronium motivates the attempt to compute the first order quantum electrodynamic corrections to this lifetime. The theoretical problems arising in this computation are here studied in detail up to the point of preparing the necessary computer programs and using them to carry out some of the less demanding steps -- but the computation has not yet been completed. Analytic evaluation of the contributing Feynman diagrams is superior to numerical evaluation, and for this process can be carried out with the aid of the Reduce algebra manipulation computer program.
The relation of the positronium decay rate to the electronpositron annihilation-in-flight amplitude is derived in detail, and it is shown that at threshold annihilation-in-flight, Coulomb divergences appear while infrared divergences vanish. The threshold Coulomb divergences in the amplitude cancel against like divergences in the modulating continuum wave function.
Using the lowest order diagrams of electron-positron annihilation into three photons as a test case, various pitfalls of computer algebraic manipulation are discussed along with ways of avoiding them. The computer manipulation of artificial polynomial expressions is preferable to the direct treatment of rational expressions, even though redundant variables may have to be introduced.
Special properties of the contributing Feynman diagrams are discussed, including the need to restore gauge invariance to the sum of the virtual photon-photon scattering box diagrams by means of a finite subtraction.
A systematic approach to the Feynman-Brown method of Decomposition of single loop diagram integrals with spin-related tensor numerators is developed in detail. This approach allows the Feynman-Brown method to be straightforwardly programmed in the Reduce algebra manipulation language.
The fundamental integrals needed in the wake of the application of the Feynman-Brown decomposition are exhibited and the methods which were used to evaluate them -- primarily dis persion techniques are briefly discussed.
Finally, it is pointed out that while the techniques discussed have permitted the computation of a fair number of the simpler integrals and diagrams contributing to the first order correction of the ortho-positronium annihilation rate, further progress with the more complicated diagrams and with the evaluation of traces is heavily contingent on obtaining access to adequate computer time and core capacity.