131 resultados para applied uniaxial stresses


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The annealing of ion implantation damage in silicon by rapid isothermal heating has been monitored by the time resolved reflectivity (TRR) method. This technique was applied simultaneously at a wavelength of 632. 8nm and also at 1152nm, where the optical absorption coefficient of silicon is less. The two wavelength method simplifies the interpretation of TRR results, extends the measurement depth and allows good resolution of the position of the interface between amorphous and crystalline silicon. The regrowth of amorphous layers in silicon, created by self implantation and implanted with electrically active impurities, was observed. Regrowth in rapid isothermal annealing occurs during the heating up stage of typical thermal cycles. Impurities such as B, P, and As increase the regrowth rate in a manner consistent with a vacancy model for regrowth. The maximum regrowth rate in boron implanted silicon is limited by the solid solubility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predictions for a 75x205mm surface semi-elliptic defect in the NESC-1 spinning cylinder test have been made using BS PD 6493:1991, the R6 procedure, non-linear cracked body finite element analysis techniques and the local approach to fracture. All the techniques agree in predicting ductile tearing near the inner surface of the cylinder followed by cleavage initiation. However they differ in the amount of ductile tearing, and the exact location and time of any cleavage event. The amount of ductile tearing decreases with increasing sophistication in the analysis, due to the drop in peak crack driving force and more explicit consideration of constraint effects. The local approach predicts a high probability of cleavage in both HAZ and base material after 190s, while the other predictions suggest that cleavage is unlikely in the HAZ due to constraint loss, but likely in the underlying base material. The timing of this event varies from ∼150s for R6 predictions to ∼250-300s using non-linear cracked body analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper uses finite element (FE) analysis to examine the residual stresses generated during the TIG welding of aluminium aerospace alloys. It also looks at whether such an approach could be useful for evaluating the effectiveness of various residual stress control techniques. However, such simulations cannot be founded in a vacuum. They require accurate measurements to refine and validate them. The unique aspect of this work is that two powerful engineering techniques are combined: FE modelling and neutron diffraction. Weld trials were performed and the direct measurement of residual strain made using the ENGIN neutron diffraction strain scanning facility. The predicted results show an excellent agreement with experimental values. Finally this model is used to simulate a weld made using a "Low Stress No Distortion" (LSND) technique. Although the stress reduction predicted is only moderate, the study suggests the approach to be a quick and efficient means of optimising such techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most tribological pairs carry their service load not just once but for a very large number of repeated cycles. During the early stages of this life, protective residual stresses may be developed in the near surface layers which enable loads which are of sufficient magnitude to cause initial plastic deformation to be accommodated purely elastically in the longer term. This is an example of the phenomenon of 'shakedown' and when its effects are incorporated into the design and operation schedule of machine components this process can lead to significant increases in specific loading duties or improvements in material utilization. Although the underlying principles can be demonstrated by reference to relatively simple stress systems, when a moving Hertzian pressure distribution in considered, which is the form of loading applicable to many contact problems, the situation is more complex. In the absence of exact solutions, bounding theorems, adopted from the theory of plasticity, can be used to generate appropriate load or shakedown limits so that shakedown maps can be drawn which delineate the boundaries between potentially safe and unsafe operating conditions. When the operating point of the contact lies outside the shakedown limit there will be an increment of plastic strain with each application of the load - these can accumulate leading eventually to either component failure or the loss of material by wear. © 2005 Elsevier Ltd. All rights reserved.