112 resultados para Uniform Commercial Code
Dynamically detuned oscillations account for the coupled rate and temporal code of place cell firing
Resumo:
The flexoelectro-optic effect describes the rotation of the optic axis of a short-pitch chiral nematic liquid crystal under the application of an electric field. We investigate the effect in the uniform standing helix, or "Grandjean" configuration. An in-plane electric field is applied. The director profile is determined numerically using a static one-dimensional continuum model with strong surface anchoring. The Berreman method is used to solve for plane-wave solutions to Maxwell's equations, and predict the optical properties of the resulting structure in general cases. By using a chiral nematic with short pitch between crossed polarizers an optical switch may be generated. With no applied field the configuration is nontransmissive at normal incidence, but becomes transmissive with an applied field. For this case, numerical results using the Berreman method are supplemented with an analytic theory and found to be in good agreement. The transmitted intensity as a function of tilt, the contrast ratio, and the tilt required for full intensity modulation are presented. The angular dependence of the transmission is calculated and the isocontrast curves are plotted. For typical material and cell parameters a switching speed of 0.017 ms and contrast ratio of 1500:1 at normal incidence are predicted, at a switch-on tilt of 41.5 degrees. Experimental verification of the analytic and numerical models is provided.
Resumo:
Multimode sound radiation from an unflanged, semi-infinite, rigid-walled circular duct with uniform subsonic mean flow everywhere is investigated theoretically. The multimode directivity depends on the amplitude and directivity function of each individual cut-on mode. The amplitude of each mode is expressed as a function of cut-on ratio for a uniform distribution of incoherent monopoles, a uniform distribution of incoherent axial dipoles, and for equal power per mode. The directivity function of each mode is obtained by applying a Lorentz transformation to the zero-flow directivity function, which is given by a Wiener-Hopf solution. This exact numerical result is compared to an analytic solution, valid in the high-frequency limit, for multimode directivity with uniform flow. The high-frequency asymptotic solution is derived assuming total transmission of power at the open end of the duct, and gives the multimode directivity function with flow in the forward arc for a general family of mode amplitude distribution functions. At high frequencies the agreement between the exact and asymptotic solutions is shown to be excellent.