6 resultados para Uniform Commercial Code

em CaltechTHESIS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis examines collapse risk of tall steel braced frame buildings using rupture-to-rafters simulations due to suite of San Andreas earthquakes. Two key advancements in this work are the development of (i) a rational methodology for assigning scenario earthquake probabilities and (ii) an artificial correction-free approach to broadband ground motion simulation. The work can be divided into the following sections: earthquake source modeling, earthquake probability calculations, ground motion simulations, building response, and performance analysis.

As a first step the kinematic source inversions of past earthquakes in the magnitude range of 6-8 are used to simulate 60 scenario earthquakes on the San Andreas fault. For each scenario earthquake a 30-year occurrence probability is calculated and we present a rational method to redistribute the forecast earthquake probabilities from UCERF to the simulated scenario earthquake. We illustrate the inner workings of the method through an example involving earthquakes on the San Andreas fault in southern California.

Next, three-component broadband ground motion histories are computed at 636 sites in the greater Los Angeles metropolitan area by superposing short-period (0.2~s-2.0~s) empirical Green's function synthetics on top of long-period ($>$ 2.0~s) spectral element synthetics. We superimpose these seismograms on low-frequency seismograms, computed from kinematic source models using the spectral element method, to produce broadband seismograms.

Using the ground motions at 636 sites for the 60 scenario earthquakes, 3-D nonlinear analysis of several variants of an 18-story steel braced frame building, designed for three soil types using the 1994 and 1997 Uniform Building Code provisions and subjected to these ground motions, are conducted. Model performance is classified into one of five performance levels: Immediate Occupancy, Life Safety, Collapse Prevention, Red-Tagged, and Model Collapse. The results are combined with the 30-year probability of occurrence of the San Andreas scenario earthquakes using the PEER performance based earthquake engineering framework to determine the probability of exceedance of these limit states over the next 30 years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

FRAME3D, a program for the nonlinear seismic analysis of steel structures, has previously been used to study the collapse mechanisms of steel buildings up to 20 stories tall. The present thesis is inspired by the need to conduct similar analysis for much taller structures. It improves FRAME3D in two primary ways.

First, FRAME3D is revised to address specific nonlinear situations involving large displacement/rotation increments, the backup-subdivide algorithm, element failure, and extremely narrow joint hysteresis. The revisions result in superior convergence capabilities when modeling earthquake-induced collapse. The material model of a steel fiber is also modified to allow for post-rupture compressive strength.

Second, a parallel FRAME3D (PFRAME3D) is developed. The serial code is optimized and then parallelized. A distributed-memory divide-and-conquer approach is used for both the global direct solver and element-state updates. The result is an implicit finite-element hybrid-parallel program that takes advantage of the narrow-band nature of very tall buildings and uses nearest-neighbor-only communication patterns.

Using three structures of varied sized, PFRAME3D is shown to compute reproducible results that agree with that of the optimized 1-core version (displacement time-history response root-mean-squared errors are ~〖10〗^(-5) m) with much less wall time (e.g., a dynamic time-history collapse simulation of a 60-story building is computed in 5.69 hrs with 128 cores—a speedup of 14.7 vs. the optimized 1-core version). The maximum speedups attained are shown to increase with building height (as the total number of cores used also increases), and the parallel framework can be expected to be suitable for buildings taller than the ones presented here.

PFRAME3D is used to analyze a hypothetical 60-story steel moment-frame tube building (fundamental period of 6.16 sec) designed according to the 1994 Uniform Building Code. Dynamic pushover and time-history analyses are conducted. Multi-story shear-band collapse mechanisms are observed around mid-height of the building. The use of closely-spaced columns and deep beams is found to contribute to the building's “somewhat brittle” behavior (ductility ratio ~2.0). Overall building strength is observed to be sensitive to whether a model is fracture-capable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis discusses simulations of earthquake ground motions using prescribed ruptures and dynamic failure. Introducing sliding degrees of freedom led to an innovative technique for numerical modeling of earthquake sources. This technique allows efficient implementation of both prescribed ruptures and dynamic failure on an arbitrarily oriented fault surface. Off the fault surface the solution of the three-dimensional, dynamic elasticity equation uses well known finite-element techniques. We employ parallel processing to efficiently compute the ground motions in domains containing millions of degrees of freedom.

Using prescribed ruptures we study the sensitivity of long-period near-source ground motions to five earthquake source parameters for hypothetical events on a strike-slip fault (Mw 7.0 to 7.1) and a thrust fault (Mw 6.6 to 7.0). The directivity of the ruptures creates large displacement and velocity pulses in the ground motions in the forward direction. We found a good match between the severity of the shaking and the shape of the near-source factor from the 1997 Uniform Building Code for strike-slip faults and thrust faults with surface rupture. However, for blind thrust faults the peak displacement and velocities occur up-dip from the region with the peak near-source factor. We assert that a simple modification to the formulation of the near-source factor improves the match between the severity of the ground motion and the shape of the near-source factor.

For simulations with dynamic failure on a strike-slip fault or a thrust fault, we examine what constraints must be imposed on the coefficient of friction to produce realistic ruptures under the application of reasonable shear and normal stress distributions with depth. We found that variation of the coefficient of friction with the shear modulus and the depth produces realistic rupture behavior in both homogeneous and layered half-spaces. Furthermore, we observed a dependence of the rupture speed on the direction of propagation and fluctuations in the rupture speed and slip rate as the rupture encountered changes in the stress field. Including such behavior in prescribed ruptures would yield more realistic ground motions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The material included within this report is the result of a series of tests of concrete specimens taken during the construction of various buildings in the cities of Pasadena and Los Angeles over a period of eight months.

The object of the problem is to determine the effect of the water ratio on the ultimate strength of the concrete as obtained from data observed and recorded from specimens taken from actual building practice rather than that from laboratory specimens made under ideal, or at least more nearly standard conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proper encoding of transmitted information can improve the performance of a communication system. To recover the information at the receiver it is necessary to decode the received signal. For many codes the complexity and slowness of the decoder is so severe that the code is not feasible for practical use. This thesis considers the decoding problem for one such class of codes, the comma-free codes related to the first-order Reed-Muller codes.

A factorization of the code matrix is found which leads to a simple, fast, minimum memory, decoder. The decoder is modular and only n modules are needed to decode a code of length 2n. The relevant factorization is extended to any code defined by a sequence of Kronecker products.

The problem of monitoring the correct synchronization position is also considered. A general answer seems to depend upon more detailed knowledge of the structure of comma-free codes. However, a technique is presented which gives useful results in many specific cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I. Complexes of Biological Bases and Oligonucleotides with RNA

The physical nature of complexes of several biological bases and oligonucleotides with single-stranded ribonucleic acids have been studied by high resolution proton magnetic resonance spectroscopy. The importance of various forces in the stabilization of these complexes is also discussed.

Previous work has shown that purine forms an intercalated complex with single-stranded nucleic acids. This complex formation led to severe and stereospecific broadening of the purine resonances. From the field dependence of the linewidths, T1 measurements of the purine protons and nuclear Overhauser enhancement experiments, the mechanism for the line broadening was ascertained to be dipole-dipole interactions between the purine protons and the ribose protons of the nucleic acid.

The interactions of ethidium bromide (EB) with several RNA residues have been studied. EB forms vertically stacked aggregates with itself as well as with uridine, 3'-uridine monophosphate and 5'-uridine monophosphate and forms an intercalated complex with uridylyl (3' → 5') uridine and polyuridylic acid (poly U). The geometry of EB in the intercalated complex has also been determined.

The effect of chain length of oligo-A-nucleotides on their mode of interaction with poly U in D20 at neutral pD have also been studied. Below room temperatures, ApA and ApApA form a rigid triple-stranded complex involving a stoichiometry of one adenine to two uracil bases, presumably via specific adenine-uracil base pairing and cooperative base stacking of the adenine bases. While no evidence was obtained for the interaction of ApA with poly U above room temperature, ApApA exhibited complex formation of a 1:1 nature with poly U by forming Watson-Crick base pairs. The thermodynamics of these systems are discussed.

Part II. Template Recognition and the Degeneracy of the Genetic Code

The interaction of ApApG and poly U was studied as a model system for the codon-anticodon interaction of tRNA and mRNA in vivo. ApApG was shown to interact with poly U below ~20°C. The interaction was of a 1:1 nature which exhibited the Hoogsteen bonding scheme. The three bases of ApApG are in an anti conformation and the guanosine base appears to be in the lactim tautomeric form in the complex.

Due to the inadequacies of previous models for the degeneracy of the genetic code in explaining the observed interactions of ApApG with poly U, the "tautomeric doublet" model is proposed as a possible explanation of the degenerate interactions of tRNA with mRNA during protein synthesis in vivo.