67 resultados para HUMAN SYSTEM INTERACTION


Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Elderly and disabled people can be hugely benefited through the advancement of modern electronic devices, as those can help them to engage more fully with the world. However, existing design practices often isolate elderly or disabled users by considering them as users with special needs. This article presents a simulator that can reflect problems faced by elderly and disabled users while they use computer, television, and similar electronic devices. The simulator embodies both the internal state of an application and the perceptual, cognitive, and motor processes of its user. It can help interface designers to understand, visualize, and measure the effect of impairment on interaction with an interface. Initially a brief survey of different user modeling techniques is presented, and then the existing models are classified into different categories. In the context of existing modeling approaches the work on user modeling is presented for people with a wide range of abilities. A few applications of the simulator, which shows the predictions are accurate enough to make design choices and point out the implication and limitations of the work, are also discussed. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports a survey on people with age-related and physical impairments in India. The survey evaluates functional parameters related to human computer interaction and reports subjective attitude and exposure of users towards technology. We found a significant cognitive decline in elderly users while their functional parameters are sufficient to use existing electronic devices. However young disabled users are found to be experienced with computer but could not have access to appropriate assistive devices, which would benefit them. Most users used desktop computers and mobile phone but none used tablet, smartphone or kiosks though they are keen to learn new technologies. Overall we hope that our results will be useful for HCI practitioners in developing countries. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Statistical dialogue models have required a large number of dialogues to optimise the dialogue policy, relying on the use of a simulated user. This results in a mismatch between training and live conditions, and significant development costs for the simulator thereby mitigating many of the claimed benefits of such models. Recent work on Gaussian process reinforcement learning, has shown that learning can be substantially accelerated. This paper reports on an experiment to learn a policy for a real-world task directly from human interaction using rewards provided by users. It shows that a usable policy can be learnt in just a few hundred dialogues without needing a user simulator and, using a learning strategy that reduces the risk of taking bad actions. The paper also investigates adaptation behaviour when the system continues learning for several thousand dialogues and highlights the need for robustness to noisy rewards. © 2011 IEEE.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A partially observable Markov decision process has been proposed as a dialogue model that enables robustness to speech recognition errors and automatic policy optimisation using reinforcement learning (RL). However, conventional RL algorithms require a very large number of dialogues, necessitating a user simulator. Recently, Gaussian processes have been shown to substantially speed up the optimisation, making it possible to learn directly from interaction with human users. However, early studies have been limited to very low dimensional spaces and the learning has exhibited convergence problems. Here we investigate learning from human interaction using the Bayesian Update of Dialogue State system. This dynamic Bayesian network based system has an optimisation space covering more than one hundred features, allowing a wide range of behaviours to be learned. Using an improved policy model and a more robust reward function, we show that stable learning can be achieved that significantly outperforms a simulator trained policy. © 2013 IEEE.