56 resultados para EARTHQUAKE, IRREGULARITY, NONLINEARITY, STRUCTURAL RESPONSE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction between unsteady heat release and acoustic pressure oscillations in gas turbines results in self-excited combustion oscillations which can potentially be strong enough to cause significant structural damage to the combustor. Correctly predicting the interaction of these processes, and anticipating the onset of these oscillations can be difficult. In recent years much research effort has focused on the response of premixed flames to velocity and equivalence ratio perturbations. In this paper, we develop a flame model based on the socalled G-Equation, which captures the kinematic evolution of the flame surfaces, under the assumptions of axisymmetry, and ignoring vorticity and compressibility. This builds on previous work by Dowling [1], Schuller et al. [2], Cho & Lieuwen [3], among many others, and extends the model to a realistic geometry, with two intersecting flame surfaces within a non-uniform velocity field. The inputs to the model are the free-stream velocity perturbations, and the associated equivalence ratio perturbations. The model also proposes a time-delay calculation wherein the time delay for the fuel convection varies both spatially and temporally. The flame response from this model was compared with experiments conducted by Balachandran [4, 5], and found to show promising agreement with experimental forced case. To address the primary industrial interest of predicting self-excited limit cycles, the model has then been linked with an acoustic network model to simulate the closed-loop interaction between the combustion and acoustic processes. This has been done both linearly and nonlinearly. The nonlinear analysis is achieved by applying a describing function analysis in the frequency domain to predict the limit cycle, and also through a time domain simulation. In the latter case, the acoustic field is assumed to remain linear, with the nonlinearity in the response of the combustion to flow and equivalence ratio perturbations. A transfer function from unsteady heat release to unsteady pressure is obtained from a linear acoustic network model, and the corresponding Green function is used to provide the input to the flame model as it evolves in the time domain. The predicted unstable frequency and limit cycle are in good agreement with experiment, demonstrating the potential of this approach to predict instabilities, and as a test bench for developing control strategies. Copyright © 2011 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main claims of the nonparametric model of random uncertainty introduced by Soize (2000) [3] is its ability to account for model uncertainty. The present paper investigates this claim by examining the statistics of natural frequencies, total energy and underlying dispersion equation yielded by the nonparametric approach for two simple systems: a thin plate in bending and a one-dimensional finite periodic massspring chain. Results for the plate show that the average modal density and the underlying dispersion equation of the structure are gradually and systematically altered with increasing uncertainty. The findings for the massspring chain corroborate the findings for the plate and show that the remote coupling of nonadjacent degrees of freedom induced by the approach suppresses the phenomenon of mode localization. This remote coupling also leads to an instantaneous response of all points in the chain when one mass is excited. In the light of these results, it is argued that the nonparametric approach can deal with a certain type of model uncertainty, in this case the presence of unknown terms of higher or lower order in the governing differential equation, but that certain expectations about the system such as the average modal density may conflict with these results. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed hybrid testing is a natural extension to and builds upon the local hybrid testing technique. Taking advantage of the hybrid nature of the test, it allows a sharing of resources and expertise between researchers from different disciplines by connecting multiple geographically distributed sites for joint testing. As part of the UK-NEES project, a successful series of three-site distributed hybrid tests have been carried out between Bristol, Cambridge and Oxford Universities. The first known multi-site distributed hybrid tests in the UK, they connected via a dedicated fibre network, using custom software, the geotechnical centrifuge at Cambridge to structural components at Bristol and Oxford. These experiments were to prove the connection and useful insights were gained into the issues involved with this distributed environment. A wider aim is towards providing a flexible testing framework to facilitate multi-disciplinary experiments such as the accurate investigation of the influence of foundations on structural systems under seismic and other loading. Time scaling incompatibilities mean true seismic soil structure interaction using a centrifuge at g is not possible, though it is clear that distributed centrifuge testing can be valuable in other problems. Development is continuing to overcome the issues encountered, in order to improve future distributed tests in the UK and beyond.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep excavations and tunnelling can cause ground movements that affect buildings within their influence zone. The current approach for building damage assessment is based on tensile strains estimated from the deflection ratio and the horizontal strains at the building foundation. This paper examines the significance of horizontal strains in buildings on individual footings. The first part of the paper presents a case study of a framed building in Singapore which was subjected to the effects of bored tunnelling, where significant horizontal strains were observed. The second part of the paper suggests a method to relate the horizontal strains induced in a building to the stiffness of the frame structure. Using a combination of simplified structural analysis and finite element models, design guidance is proposed to estimate excavation-induced horizontal strains in frame buildings on individual footings. © 2012 Taylor & Francis Group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vibration response of piled foundations due to ground-borne vibration produced by an underground railway is a largely-neglected area in the field of structural dynamics. However, this continues to be an important aspect of research as it is expected that the presence of piled foundations can have a significant influence on the propagation and transmission of the wavefield produced by the underground railway. This paper presents a comparison of two methods that can be employed in calculating the vibration response of a piled foundation: an efficient semi-analytical model, and a Boundary Element model. The semi-analytical model uses a column or an Euler beam to model the pile, and the soil is modelled as a linear, elastic continuum that has the geometry of a thick-walled cylinder with an infinite outer radius and an inner radius equal to the radius of the pile. The boundary element model uses a constant-element BEM formulation for the halfspace, and a rectangular discretisation of the circular pile-soil interface. The piles are modelled as Timoshenko beams. Pile-soil-pile interactions are inherently accounted for in the BEM equations, whereas in the semi-analytical model these are quantified using the superposition of interaction factors. Both models use the method of joining subsystems to incorporate the incident wavefield generated by the underground railway into the pile model. Results are computed for a single pile subject to an inertial loading, pile-soil-pile interactions, and a pile group subjected to excitation from an underground railway. The two models are compared in terms of accuracy, computation time, versatility and applicability, and guidelines for future vibration prediction models involving piled foundations are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of changes in vibration data for damage detection of reinforced concrete structures faces many challenges that obstruct its transition from a research topic to field applications. Among these is the lack of appropriate damage models that can be deployed in the damage detection methods. In this paper, a model of a simply supported reinforced concrete beam with multiple cracks is developed to examine its use for damage detection and structural health monitoring. The cracks are simulated by a model that accounts for crack formation, propagation and closure. The beam model is studied under different dynamic excitations, including sine sweep and single excitation frequency, for various damage levels. The changes in resonant frequency with increasing loads are examined along with the nonlinear vibration characteristics. The model demonstrates that the resonant frequency reduces by about 10% at the application of 30% of the ultimate load and then drops gradually by about 25% at 70% of the ultimate load. The model also illustrates some nonlinearity in the dynamic response of damaged beams. The appearance of super-harmonics shows that the nonlinearity is higher when the damage level is about 35% and then decreases with increasing damage. The restoring force-displacement relationship predicted the reduction in the overall stiffness of the damaged beam. The model quantitatively predicts the experimental vibration behaviour of damaged RC beams and also shows the damage dependency of nonlinear vibration behaviour. © 2011 Published under licence by IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. This inherent buoyancy may cause lightweight structures to float when the soil liquefies. Centrifuge tests have been carried out to study the excess pore pressure generation and dissipation in liquefiable soils. In these tests, near full liquefaction conditions were attained within a few cycles of the earthquake loading. In the case of high hydraulic conductivity sands, significant dissipation could take place even during the earthquake loading which inhibits full liquefaction from occurring. In the case of excess pore pressure generation and dissipation around a floating structure, the cyclic response of the structure may lead to the reduction in excess pore pressure near the face of the structure as compared to the far field. This reduction in excess pore pressure is due to shear-induced dilation and suction pressures arising from extensile stresses at the soil-structure interface. Given the lower excess pore pressure around the structure; the soil around the structure retains a portion of this shear strength which in turn can discourage significant uplift of the underground structure. Copyright © 2012, IGI Global.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The geological profile of submerged slopes on the continental shelf typically includes soft cohesive soils with thicknesses ranging from a few meters to tens or hundreds of meters. The response of these soils in simple shear tests is largely influenced by the presence of an initial consolidation shear stress, inducing anisotropic stress-strain-strength properties which depend also on the direction of shear. In this paper, a new simplified effective-stress-based model describing the behavior of normally to lightly overconsolidated cohesive soils is used in conjunction with a one-dimensional seismic site response analysis computer code to illustrate the importance of accounting for anisotropy and small strain nonlinearity. In particular, a simple example is carried out to compare results for different slope inclinations. Depth profiling of the maximum shear strains and permanent deformations provide insight into the mechanisms of deformation during a seismic event, and the effects of sloping ground conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adoption of lean premixed prevaporised combustion systems can reduce NOx emissions from gas turbines, but unfortunately also increases their susceptibility to thermoacoustic instabilities. Initially, acoustic waves can produce heat release fluctuations by a variety of mechanisms, often by perturbing the equivalence ratio. If correctly phased, heat release fluctuations can subsequently generate more acoustic waves, which at high amplitude can result in significant structural damage to the combustor. The prediction of this phenomenon is of great industrial interest. In previous work, we have coupled a physics based, kinematic model of the flame with a network model to provide the planar acoustic response necessary to close the feedback loop and predict the onset and amplitude of thermoacoustic instabilities in a lab-scale, axisymmetric single burner combustor. The advantage of a time domain approach is that the modal interaction, the influence of harmonics, and flame saturation can be investigated. This paper extends this approach to more realistic, annular geometries, where both planar and circumferential modes must be considered. In lean premixed prevaporised combustors, fluctuations in equivalence ratio have been shown to be a dominant cause of unsteady combustion. These can occur, for example, due to velocity perturbations in the premix ducts, which can lead to equivalence ratio fluctuations at the fuel injectors, which are subsequently convected downstream to the flame surfaces. Here, they can perturb the heat release by locally altering the flame speed, enthalpy of combustion, and, indirectly, the flame surface area. In many gas turbine designs, particularly aeroengines, the geometries are composed of a ring of premix ducts linking a plenum and an annular combustor. The most unstable modes are often circumferential modes. The network model is used to characterise the flow response of the geometry to heat fluctuations at an appropriate location, such as the fuel injectors. The heat release at each flame holder is determined in the time domain using the kinematic flame model derived, as a function of the flow perturbations in the premix duct. This approach is demonstrated for an annular ring of burners on a in a simple geometry. The approach is then extended to an industrial type gas turbine combustor, and used to predict the limit cycle amplitudes. Copyright © 2012 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physical models are widely used in the study of geotechnical earthquake engineering phenomena, and the comparison of modelling results to observations from field reconnaissance provides a transparent means of evaluating the design of our physical models. This paper compares centrifuge tests of pile groups in laterally spreading slopes with the response of piled bridge abutments in the 2011 Christchurch earthquake. We show that the model foundation's fixity conditions strongly affect the success with which the mechanism of response of the real abutments is replicated in the tests. © 2012 American Society of Civil Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous studies on the rigid rocking block have generated a wealth of knowledge about rocking behavior. However, evaluation of more complex rocking systems requires the derivation and solution of complicated equations of motion. This paper investigates the possibility of a unified description of several rocking systems through investigation of rocking mechanisms which describe the masonry wall and the masonry arch. Effective rocking parameters are derived for each of these structures, and the similarity of the rocking behavior is discussed. The error of the proposed approximation, which defines the limitations for this approach, is quantified for the example structures considered. Where appropriate, a unified description of rocking would allow the use of rocking spectra, which would be useful to readily predict the response of a wide array of rocking structures.