68 resultados para Optimum operations


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Production responsiveness refers to the ability of a production system to achieve its operational goals in the presence of supplier, internal and customer disturbances, where disturbances are those sources of change which occur independently of the system's intentions. A set of audit tools for assessing the responsiveness of production operations is being prepared as part of an EPSRC funded investigation. These tools are based on the idea that the ability to respond is linked to: the nature of the disturbances or changes requiring a response; their impact on production goals; and the inherent response capabilities of the operation. These response capabilities include information gathering and processing (to detect disturbances and production conditions), decision processes (which initiate system responses to disturbances) and various types of process flexibilities and buffers (which provide the physical means of dealing with disturbances). The paper discusses concepts and issues associated with production responsiveness, describes the audit tools that have been developed and illustrates their use in the context of a steel manufacturing plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report the development of 1.4 kV 25 A PT and NPT Trench IGBTs with ultra-low on-resistance, latch-up free operation and highly superior overall performance when compared to previously reported DMOS IGBTs in the same class. We have fabricated both PT and transparent anode NPT devices to cover a wide range of applications which require very low on-state losses or very fast time with ultra-low switching losses. The minimum forward voltage drop at the standard current density of 100A/cm2 was 1.1 V for PT non-irradiated devices and 2.1 V for 16 MRad PT irradiated devices. The non-irradiated transparent emitter NPT structure has a typical forward voltage drop of 2.2 V, a turn-off time below 100 ns and turn-off energy losses of 11.2 mW/cm2 at 125 C. The maximum controllable current density was in excess of 1000A/cm2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Trench Insulated Gate Bipolar Transistor (IGBT) is the most promising structure for the next generation of power semiconductor devices with wide applications ranging from motor control (1-4 kV) to HVDC (6.5 kV). Here we present for the first time an optimum design of a 1.4kV Trench IGBT using a new, fully integrated optimisation system comprising process and device simulators and the RSM optimiser. The use of this new TCAD system has contributed largely to realizing devices with characteristics far superior to the previous DMOS generation of IGBTs. Full experimental results on 1.4kV Trench IGBTs which are in excellent agreement with the TCAD predictions are reported.