1 resultado para Optimum operations
em CaltechTHESIS
Filtro por publicador
- Repository Napier (4)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (29)
- Archive of European Integration (114)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (1)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (31)
- Boston University Digital Common (1)
- Brock University, Canada (7)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (68)
- CentAUR: Central Archive University of Reading - UK (38)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (26)
- Cochin University of Science & Technology (CUSAT), India (10)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (31)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (3)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons @ Winthrop University (2)
- Digital Repository at Iowa State University (2)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- Greenwich Academic Literature Archive - UK (4)
- Indian Institute of Science - Bangalore - Índia (59)
- Instituto Politécnico do Porto, Portugal (4)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (2)
- Publishing Network for Geoscientific & Environmental Data (6)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (47)
- Queensland University of Technology - ePrints Archive (90)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (74)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- South Carolina State Documents Depository (1)
- Universidad Autónoma de Nuevo León, Mexico (4)
- Universidad Politécnica de Madrid (22)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (3)
- University of Connecticut - USA (1)
- University of Michigan (169)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (14)
Resumo:
The feedback coding problem for Gaussian systems in which the noise is neither white nor statistically independent between channels is formulated in terms of arbitrary linear codes at the transmitter and at the receiver. This new formulation is used to determine a number of feedback communication systems. In particular, the optimum linear code that satisfies an average power constraint on the transmitted signals is derived for a system with noiseless feedback and forward noise of arbitrary covariance. The noisy feedback problem is considered and signal sets for the forward and feedback channels are obtained with an average power constraint on each. The general formulation and results are valid for non-Gaussian systems in which the second order statistics are known, the results being applicable to the determination of error bounds via the Chebychev inequality.