355 resultados para Bayesian probability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an introduction to Bayesian methods in signal processing will be given. The paper starts by considering the important issues of model selection and parameter estimation and derives analytic expressions for the model probabilities of two simple models. The idea of marginal estimation of certain model parameter is then introduced and expressions are derived for the marginal probabilitiy densities for frequencies in white Gaussian noise and a Bayesian approach to general changepoint analysis is given. Numerical integration methods are introduced based on Markov chain Monte Carlo techniques and the Gibbs sampler in particular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the use of found data increases, more systems are being built using adaptive training. Here transforms are used to represent unwanted acoustic variability, e.g. speaker and acoustic environment changes, allowing a canonical model that models only the "pure" variability of speech to be trained. Adaptive training may be described within a Bayesian framework. By using complexity control approaches to ensure robust parameter estimates, the standard point estimate adaptive training can be justified within this Bayesian framework. However during recognition there is usually no control over the amount of data available. It is therefore preferable to be able to use a full Bayesian approach to applying transforms during recognition rather than the standard point estimates. This paper discusses various approximations to Bayesian approaches including a new variational Bayes approximation. The application of these approaches to state-of-the-art adaptively trained systems using both CAT and MLLR transforms is then described and evaluated on a large vocabulary speech recognition task. © 2005 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a Bayesian method for polyphonic music description. The method first divides an input audio signal into a series of sections called snapshots, and then estimates parameters such as fundamental frequencies and amplitudes of the notes contained in each snapshot. The parameter estimation process is based on a frequency domain modelling and Gibbs sampling. Experimental results obtained from audio signals of test note patterns are encouraging; the accuracy is better than 80% for the estimation of fundamental frequencies in terms of semitones and instrument names when the number of simultaneous notes is two.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of Bayes' Theorem to signal processing provides a consistent framework for proceeding from prior knowledge to a posterior inference conditioned on both the prior knowledge and the observed signal data. The first part of the lecture will illustrate how the Bayesian methodology can be applied to a variety of signal processing problems. The second part of the lecture will introduce the concept of Markov Chain Monte-Carlo (MCMC) methods which is an effective approach to overcoming many of the analytical and computational problems inherent in statistical inference. Such techniques are at the centre of the rapidly developing area of Bayesian signal processing which, with the continual increase in available computational power, is likely to provide the underlying framework for most signal processing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes how Bayesian updates of dialogue state can be used to build a bus information spoken dialogue system. The resulting system was deployed as part of the 2010 Spoken Dialogue Challenge. The purpose of this paper is to describe the system, and provide both simulated and human evaluations of its performance. In control tests by human users, the success rate of the system was 24.5% higher than the baseline Lets Go! system. ©2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supply chain tracking information is one of the main levers for achieving operational efficiency. RFID technology and the EPC Network can deliver serial-level product information that was never before available. However, these technologies still fail to meet the managers' visibility requirements in full, since they provide information about product location at specific time instances only. This paper proposes a model that uses the data provided by the EPC Network to deliver enhanced tracking information to the final user. Following a Bayesian approach, the model produces realistic ongoing estimates about the current and future location of products across a supply network, taking into account the characteristics of the product behavior and the configuration of the data collection points. These estimates can then be used to optimize operational decisions that depend on product availability at different locations. The enhancement of tracking information quality is highlighted through an example. © 2009 IFAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bayesian perspective of designing for the consequences of hazard is discussed. Structural engineers should be educated in Bayesian theory and its underlying philosophy, and about the centrality to the prediction problem of the predictive distribution. The primary contribution that Bayesianism can make to the debate about extreme possibilities is its clarification of the language of and thinking about risk. Frequentist methodologies are the wrong approach to the decisions that engineers need to make, decisions that involve assessments of abstract future possibilities based on incomplete and abstract information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present in this paper a new multivariate probabilistic approach to Acoustic Pulse Recognition (APR) for tangible interface applications. This model uses Principle Component Analysis (PCA) in a probabilistic framework to classify tapping pulses with a high degree of variability. It was found that this model, achieves a higher robustness to pulse variability than simpler template matching methods, specifically when allowed to train on data containing high variability. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information theoretic active learning has been widely studied for probabilistic models. For simple regression an optimal myopic policy is easily tractable. However, for other tasks and with more complex models, such as classification with nonparametric models, the optimal solution is harder to compute. Current approaches make approximations to achieve tractability. We propose an approach that expresses information gain in terms of predictive entropies, and apply this method to the Gaussian Process Classifier (GPC). Our approach makes minimal approximations to the full information theoretic objective. Our experimental performance compares favourably to many popular active learning algorithms, and has equal or lower computational complexity. We compare well to decision theoretic approaches also, which are privy to more information and require much more computational time. Secondly, by developing further a reformulation of binary preference learning to a classification problem, we extend our algorithm to Gaussian Process preference learning.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: