28 resultados para strongly regular graphs
Resumo:
An infinite series of twofold, two-way weavings of the cube, corresponding to 'wrappings', or double covers of the cube, is described with the aid of the two-parameter Goldberg- Coxeter construction. The strands of all such wrappings correspond to the central circuits (CCs) of octahedrites (four-regular polyhedral graphs with square and triangular faces), which for the cube necessarily have octahedral symmetry. Removing the symmetry constraint leads to wrappings of other eight-vertex convex polyhedra. Moreover, wrappings of convex polyhedra with fewer vertices can be generated by generalizing from octahedrites to i-hedrites, which additionally include digonal faces. When the strands of a wrapping correspond to the CCs of a four-regular graph that includes faces of size greater than 4, non-convex 'crinkled' wrappings are generated. The various generalizations have implications for activities as diverse as the construction of woven-closed baskets and the manufacture of advanced composite components of complex geometry. © 2012 The Royal Society.
Resumo:
A group of mobile robots can localize cooperatively, using relative position and absolute orientation measurements, fused through an extended Kalman filter (ekf). The topology of the graph of relative measurements is known to affect the steady-state value of the position error covariance matrix. Classes of sensor graphs are identified, for which tight bounds for the trace of the covariance matrix can be obtained based on the algebraic properties of the underlying relative measurement graph. The string and the star graph topologies are considered, and the explicit form of the eigenvalues of error covariance matrix is given. More general sensor graph topologies are considered as combinations of the string and star topologies, when additional edges are added. It is demonstrated how the addition of edges increases the trace of the steady-state value of the position error covariance matrix, and the theoretical predictions are verified through simulation analysis.
Resumo:
When searching for characteristic subpatterns in potentially noisy graph data, it appears self-evident that having multiple observations would be better than having just one. However, it turns out that the inconsistencies introduced when different graph instances have different edge sets pose a serious challenge. In this work we address this challenge for the problem of finding maximum weighted cliques. We introduce the concept of most persistent soft-clique. This is subset of vertices, that 1) is almost fully or at least densely connected, 2) occurs in all or almost all graph instances, and 3) has the maximum weight. We present a measure of clique-ness, that essentially counts the number of edge missing to make a subset of vertices into a clique. With this measure, we show that the problem of finding the most persistent soft-clique problem can be cast either as: a) a max-min two person game optimization problem, or b) a min-min soft margin optimization problem. Both formulations lead to the same solution when using a partial Lagrangian method to solve the optimization problems. By experiments on synthetic data and on real social network data we show that the proposed method is able to reliably find soft cliques in graph data, even if that is distorted by random noise or unreliable observations. Copyright 2012 by the author(s)/owner(s).
Resumo:
A fundamental problem in the analysis of structured relational data like graphs, networks, databases, and matrices is to extract a summary of the common structure underlying relations between individual entities. Relational data are typically encoded in the form of arrays; invariance to the ordering of rows and columns corresponds to exchangeable arrays. Results in probability theory due to Aldous, Hoover and Kallenberg show that exchangeable arrays can be represented in terms of a random measurable function which constitutes the natural model parameter in a Bayesian model. We obtain a flexible yet simple Bayesian nonparametric model by placing a Gaussian process prior on the parameter function. Efficient inference utilises elliptical slice sampling combined with a random sparse approximation to the Gaussian process. We demonstrate applications of the model to network data and clarify its relation to models in the literature, several of which emerge as special cases.
Resumo:
We offer a solution to the problem of efficiently translating algorithms between different types of discrete statistical model. We investigate the expressive power of three classes of model-those with binary variables, with pairwise factors, and with planar topology-as well as their four intersections. We formalize a notion of "simple reduction" for the problem of inferring marginal probabilities and consider whether it is possible to "simply reduce" marginal inference from general discrete factor graphs to factor graphs in each of these seven subclasses. We characterize the reducibility of each class, showing in particular that the class of binary pairwise factor graphs is able to simply reduce only positive models. We also exhibit a continuous "spectral reduction" based on polynomial interpolation, which overcomes this limitation. Experiments assess the performance of standard approximate inference algorithms on the outputs of our reductions.
Resumo:
Low-temperature time-resolved photoluminescence spectroscopy is used to probe the dynamics of photoexcited carriers in single InP nanowires. At early times after pulsed excitation, the photoluminescence line shape displays a characteristic broadening, consistent with emission from a degenerate, high-density electron-hole plasma. As the electron-hole plasma cools and the carrier density decreases, the emission rapidly converges toward a relatively narrow band consistent with free exciton emission from the InP nanowire. The free excitons in these single InP nanowires exhibit recombination lifetimes closely approaching that measured in a high-quality epilayer, suggesting that in these InP nanowires, electrons and holes are relatively insensitive to surface states. This results in higher quantum efficiencies than other single-nanowire systems as well as significant state-filling and band gap renormalization, which is observed at high electron-hole carrier densities.