5 resultados para strongly regular graphs

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis consists of three separate studies of roles that black holes might play in our universe.

In the first part we formulate a statistical method for inferring the cosmological parameters of our universe from LIGO/VIRGO measurements of the gravitational waves produced by coalescing black-hole/neutron-star binaries. This method is based on the cosmological distance-redshift relation, with "luminosity distances" determined directly, and redshifts indirectly, from the gravitational waveforms. Using the current estimates of binary coalescence rates and projected "advanced" LIGO noise spectra, we conclude that by our method the Hubble constant should be measurable to within an error of a few percent. The errors for the mean density of the universe and the cosmological constant will depend strongly on the size of the universe, varying from about 10% for a "small" universe up to and beyond 100% for a "large" universe. We further study the effects of random gravitational lensing and find that it may strongly impair the determination of the cosmological constant.

In the second part of this thesis we disprove a conjecture that black holes cannot form in an early, inflationary era of our universe, because of a quantum-field-theory induced instability of the black-hole horizon. This instability was supposed to arise from the difference in temperatures of any black-hole horizon and the inflationary cosmological horizon; it was thought that this temperature difference would make every quantum state that is regular at the cosmological horizon be singular at the black-hole horizon. We disprove this conjecture by explicitly constructing a quantum vacuum state that is everywhere regular for a massless scalar field. We further show that this quantum state has all the nice thermal properties that one has come to expect of "good" vacuum states, both at the black-hole horizon and at the cosmological horizon.

In the third part of the thesis we study the evolution and implications of a hypothetical primordial black hole that might have found its way into the center of the Sun or any other solar-type star. As a foundation for our analysis, we generalize the mixing-length theory of convection to an optically thick, spherically symmetric accretion flow (and find in passing that the radial stretching of the inflowing fluid elements leads to a modification of the standard Schwarzschild criterion for convection). When the accretion is that of solar matter onto the primordial hole, the rotation of the Sun causes centrifugal hangup of the inflow near the hole, resulting in an "accretion torus" which produces an enhanced outflow of heat. We find, however, that the turbulent viscosity, which accompanies the convective transport of this heat, extracts angular momentum from the inflowing gas, thereby buffering the torus into a lower luminosity than one might have expected. As a result, the solar surface will not be influenced noticeably by the torus's luminosity until at most three days before the Sun is finally devoured by the black hole. As a simple consequence, accretion onto a black hole inside the Sun cannot be an answer to the solar neutrino puzzle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider canonical systems with singular left endpoints, and discuss the concept of a scalar spectral measure and the corresponding generalized Fourier transform associated with a canonical system with a singular left endpoint. We use the framework of de Branges’ theory of Hilbert spaces of entire functions to study the correspondence between chains of non-regular de Branges spaces, canonical systems with singular left endpoints, and spectral measures.

We find sufficient integrability conditions on a Hamiltonian H which ensure the existence of a chain of de Branges functions in the first generalized Pólya class with Hamiltonian H. This result generalizes de Branges’ Theorem 41, which showed the sufficiency of stronger integrability conditions on H for the existence of a chain in the Pólya class. We show the conditions that de Branges came up with are also necessary. In the case of Krein’s strings, namely when the Hamiltonian is diagonal, we show our proposed conditions are also necessary.

We also investigate the asymptotic conditions on chains of de Branges functions as t approaches its left endpoint. We show there is a one-to-one correspondence between chains of de Branges functions satisfying certain asymptotic conditions and chains in the Pólya class. In the case of Krein’s strings, we also establish the one-to-one correspondence between chains satisfying certain asymptotic conditions and chains in the generalized Pólya class.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of the continuation to complex values of the angular momentum of the partial wave amplitude is examined for the simplest production process, that of two particles → three particles. The presence of so-called "anomalous singularities" complicates the procedure followed relative to that used for quasi two-body scattering amplitudes. The anomalous singularities are shown to lead to exchange degenerate amplitudes with possible poles in much the same way as "normal" singularities lead to the usual signatured amplitudes. The resulting exchange-degenerate trajectories would also be expected to occur in two-body amplitudes.

The representation of the production amplitude in terms of the singularities of the partial wave amplitude is then developed and applied to the high energy region, with attention being paid to the emergence of "double Regge" terms. Certain new results are obtained for the behavior of the amplitude at zero momentum transfer, and some predictions of polarization and minima in momentum transfer distributions are made. A calculation of the polarization of the ρo meson in the reaction π - p → π - ρop at high energy with small momentum transfer to the proton is compared with data taken at 25 Gev by W. D. Walker and collaborators. The result is favorable, although limited by the statistics of the available data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents investigations in four areas of theoretical astrophysics: the production of sterile neutrino dark matter in the early Universe, the evolution of small-scale baryon perturbations during the epoch of cosmological recombination, the effect of primordial magnetic fields on the redshifted 21-cm emission from the pre-reionization era, and the nonlinear stability of tidally deformed neutron stars.

In the first part of the thesis, we study the asymmetry-driven resonant production of 7 keV-scale sterile neutrino dark matter in the primordial Universe at temperatures T >~ 100 MeV. We report final DM phase space densities that are robust to uncertainties in the nature of the quark-hadron transition. We give transfer functions for cosmological density fluctuations that are useful for N-body simulations. We also provide a public code for the production calculation.

In the second part of the thesis, we study the instability of small-scale baryon pressure sound waves during cosmological recombination. We show that for relevant wavenumbers, inhomogenous recombination is driven by the transport of ionizing continuum and Lyman-alpha photons. We find a maximum growth factor less than ≈ 1.2 in 107 random realizations of initial conditions. The low growth factors are due to the relatively short duration of the recombination epoch.

In the third part of the thesis, we propose a method of measuring weak magnetic fields, of order 10-19 G (or 10-21 G if scaled to the present day), with large coherence lengths in the inter galactic medium prior to and during the epoch of cosmic reionization. The method utilizes the Larmor precession of spin-polarized neutral hydrogen in the triplet state of the hyperfine transition. We perform detailed calculations of the microphysics behind this effect, and take into account all the processes that affect the hyperfine transition, including radiative decays, collisions, and optical pumping by Lyman-alpha photons.

In the final part of the thesis, we study the non-linear effects of tidal deformations of neutron stars (NS) in a compact binary. We compute the largest three- and four-mode couplings among the tidal mode and high-order p- and g-modes of similar radial wavenumber. We demonstrate the near-exact cancellation of their effects, and resolve the question of the stability of the tidally deformed NS to leading order. This result is significant for the extraction of binary parameters from gravitational wave observations.