30 resultados para WIRES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We measure the effects of phonon confinement on the Raman spectra of silicon nanowires (SiNWs). We show how previous reports of phonon confinement in SiNWs and nanostructures are actually inconsistent with phonon confinement, but are due to the intense local heating caused by the laser power used for Raman measurements. This is peculiar to nanostructures, and would require orders of magnitude higher power in bulk Si. By varying the temperature, power and excitation energy, we identify the contributions of pure confinement, heating and carrier photo-excitation. After eliminating laser-related effects, the Raman spectra show confinement signatures typical of quantum wires. © 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We measure the effects of phonon confinement on the Raman spectra of silicon nanowires. We show how previous spectra were inconsistent with phonon confinement, but were due to intense local heating caused by the laser. This is peculiar to nanostructures, and would require orders of magnitude more power in bulk Si. By working at very low laser powers, we identify the contribution of pure confinement typical of quantum wires.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A packaging technique suited to applying MEMS strain sensors realized on a silicon chip to a steel flat surface is described. The method is based on adhesive bonding of the silicon chip rear surface on steel using two types of glue normally used for standard piezoresistive strain sensors (Mbond200/ 600), using direct wire bonding of the chip to a Printed Circuit Board, also fixed on steel. In order to protect the sensor from the external environment, and to improve the MEMS performance, the silicon chip is encapsulated with a metal cap hermetically sealed-off under vacuum condition with a vacuum adhesive in which the bonding wires are also protected from possible damage. In order to evaluate the mechanical coupling of the silicon chip with the bar and thestress transfer extent to the silicon surface, commercial strain sensors have been applied on the chip glued on a steel bar in alaboratory setup able to generate strain by inflection, yielding a stress transfer around 70% from steel to silicon. © 2008 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the magnetization reversal process of a single chain of identical nanomagnetic dots fabricated from 30 nm thick Ni 80Fe20. The structures consist of two 5 μm wide support wires bridged with a single chain of identical dots of diameter δ in the range 100-250 nm. For fields applied perpendicular to the single chain, we observed an unusual size dependent hysteretic behavior in the magnetoresistance curve at high field. This is due to the magnetostatic interaction arising from the proximity of the magnetic charges. We are able to deduce from a simple micromagnetic simulation that the reversal process in the chain of dots with δ=100nm is mediated by a collective process of nearly coherent spin rotation. The magnetotransport measurements along the chain reveal a complex magnetization reversal process in the chain of nanomagnets. © 2002 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of alternative designs are presented for Penning ion traps suitable for quantum information processing (QIP) applications with atomic ions. The first trap design is a simple array of long straight wires, which allows easy optical access. A prototype of this trap has been built to trap Ca+ and a simple electronic detection scheme has been employed to demonstrate the operation of the trap. Another trap design consists of a conducting plate with a hole in it situated above a continuous conducting plane. The final trap design is based on an array of pad electrodes. Although this trap design lacks the open geometry of the other traps described above, the pad design may prove useful in a hybrid scheme in which information processing and qubit storage take place in different types of trap. The behaviour of the pad traps is simulated numerically and techniques for moving ions rapidly between traps are discussed. Future experiments with these various designs are discussed. All of the designs lend themselves to the construction of multiple trap arrays, as required for scalable ion trap QIP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A measurement system for magnetic fields or electric currents uses a single-core fluxgate, magneto-inductive or magneto-impedance device driven from a radio frequency excitation source. Flux nulling feedback circuitry is provided to maintain the core of the sensor at substantially zero net flux and improve the linearity and dynamic response of the sensor system. A high pass filter is provided for reducing the dc effects of the ohmic resistance of the coil and lead wires on the effectiveness of the flux nulling feedback.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the use of magnetic materials to divert flux in high-temperature superconductor superconducting coils and reduce transport ac loss is investigated. This particular technique is preferred over other techniques, such as striation, Roebel transposition, and twisted wires because it does not require modification to the conductor itself, which can be detrimental to the properties of the superconductor. The technique can also be implemented for existing coils. The analysis is carried out using a coil model based on the H formulation and implemented in comsol multiphysics. Both weakly and strongly magnetic materials are investigated, and it is shown that the use of such materials can divert flux and achieve a reduction in transport ac loss, which, in some cases, is quite significant. This analysis acts to provide a foundation for further optimization and experimental work in the future. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cheap to make and easy to shape, Magnesium Diboride (MgB2) throws the field of applied superconductivity wide open. Great efforts have been made to develop a super-conducting fault current limiter (SFCL) using MgB 2. With a superconducting transition temperature of 39 K, MgB 2 can be conveniently cooled with commercial cryocoolers. A cryogenic desktop test system, an ac pulse generation system and a real time data acquisition program in LabView/DAQmx were developed to investigate the quench behavior of MgB2 wires under pulse overcurrents at 25 K in self-field conditions. The experimental results on the current limitation behavior show the possibilities for using MgB2 for future SFCL applications. © 2007 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have built a four-pole high temperature superconducting (HTS) permanent magnet synchronous motor (PMSM) in our lab. At this stage, the HTS PMSM uses two 2G HTS racetrack coils, which are YBCO wires, type 344 from AMSC, and four conventional copper coils as stator windings. 75 YBCO bulks are mounted on the surface of the rotor. After the pulsed field magnetization system had been developed and tested in our lab in 2011, the rotor can trap a four-pole magnetic field. This makes HTS bulks possible for motor application, other than HTS coils. The HTS PMSM can successfully run at a low speed of around 150 rpm for an initial test. This paper states theoretical and practical works on the HTS PMSM's operation including HTS motor drive development and its application. © 2002-2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we examine the phenomenon of single-crystal halide salt wire growth at the surface of porous materials. We report the use of a single-step casting technique with a supramolecular self-assembly gel matrix that upon drying leads to the growth of single-crystal halide (e.g., NaCl, KCl, and KI) nanowires with diameters ~130-200 nm. We demonstrate their formation using electron microscopy and electron-dispersive X-ray spectroscopy, showing that the supramolecular gel stabilizes the growth of these wires by facilitating a diffusion-driven base growth mechanism. Critically, we show that standard non-supramolecular gels are unable to facilitate nanowire growth. We further show that these nanowires can be grown by seeding, forming nanocrystal gardens. This study helps understand the possible prefunctionalization of membranes to stimulate ion-specific filters or salt efflorescence suppressors, while also providing a novel route to nanomaterial growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temperature-dependent polarized microphotoluminescence measurements of single GaAsAlGaAs core-shell nanowires are used to probe their electronic states. The low-temperature emission from these wires is strongly enhanced compared with that observed in bare GaAs nanowires and is strongly polarized, reflecting the dielectric mismatch between the nanowire and the surrounding air. The temperature-dependent band gap of the nanowires is seen to be somewhat different from that observed in bulk GaAs, and the PL rapidly quenches above 120 K, with an activation energy of 17 meV reflecting the presence of nonradiative defects. © 2006 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents new experimental measurements of spike-type stall inception. The measurements were carried out in the single stage Deverson compressor at the Whittle Laboratory. The primary objective was to characterize the flow field in the tip clearance gap during stall inception using sufficient instrumentation to give high spatial and temporal resolution. Measurements were recorded using arrays of unsteady pressure transducers over the rotor tips and hot-wires in the tip gap. Pre-stall ensemble averaged velocity and pressure maps were obtained as well as pressure contours of the stall event. In order to study the transient inception process in greater detail, vector maps were built up from hundreds of stalling events using a triggering system based on the stalling event itself. The results show an embryonic disturbance starting within the blade passage and leading to the formation of a clear spike. The origins of the spike and its relation to the tip leakage vortex are discussed. It has also been shown that before stall the flow in the blade passage which is most likely to stall is generally more unsteady, from revolution to revolution, than the other passages in the annulus. Copyright © 2012 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents new experimental measurements of spike-type stall inception. The measurements were carried out in the single stage Deverson compressor at the Whittle Laboratory. The primary objective was to characterize the flow field in the tip clearance gap during stall inception using sufficient instrumentation to give high spatial and temporal resolution. Measurements were recorded using arrays of unsteady pressure transducers over the rotor tips and hot-wires in the tip gap. Prestall ensemble averaged velocity and pressure maps were obtained as well as pressure contours of the stall event. In order to study the transient inception process in greater detail, vector maps were built up from hundreds of stalling events using a triggering system based on the stalling event itself. The results show an embryonic disturbance starting within the blade passage and leading to the formation of a clear spike. The origins of the spike and its relation to the tip leakage vortex are discussed. It has also been shown that before stall, the flow in the blade passage which is most likely to stall is generally more unsteady, from revolution to revolution, than the other passages in the annulus. © 2014 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of long-length, high current density Bi2Sr 2CaCu2Ox wires and (RE)Ba2Cu 3Oy coated conductors has now advanced such that superconducting magnets for energy applications and high field applications are progressing rapidly. Europe, along with China, Korea the US and Japan is an important player in the development and exploitation of High Temperature Superconductors in practical applications. © 2013 IEEE.