51 resultados para C-17 (Jet transport)


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface-architecture-controlled ZnO nanowires were grown using a vapor transport method on various ZnO buffer film coated c-plane sapphire substrates with or without Au catalysts. The ZnO nanowires that were grown showed two different types of geometric properties: corrugated ZnO nanowires having a relatively smaller diameter and a strong deep-level emission photoluminescence (PL) peak and smooth ZnO nanowires having a relatively larger diameter and a weak deep-level emission PL peak. The surface morphology and size-dependent tunable electronic transport properties of the ZnO nanowires were characterized using a nanowire field effect transistor (FET) device structure. The FETs made from smooth ZnO nanowires with a larger diameter exhibited negative threshold voltages, indicating n-channel depletion-mode behavior, whereas those made from corrugated ZnO nanowires with a smaller diameter had positive threshold voltages, indicating n-channel enhancement-mode behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many aerospace companies are currently making the transition to providing fully-integrated product-service offerings in which their products are designed from the outset with life-cycle considerations in mind. Based on a case study at Rolls-Royce, Civil Aerospace, this paper demonstrates how an interactive approach to process simulation can be used to support the redesign of existing design processes in order to incorporate life-cycle engineering (LCE) considerations. The case study provides insights into the problems of redesigning the conceptual stages of a complex, concurrent engineering design process and the practical value of process simulation as a tool to support the specification of process changes in the context of engineering design. The paper also illustrates how development of a simulation model can provide significant benefit to companies through the understanding of process behaviour that is gained through validating the behaviour of the model using different design and iteration scenarios. Keywords: jet engine design; life-cycle engineering; LCE; process change; design process simulation; applied signposting model; ASM. Copyright © 2011 Inderscience Enterprises Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors have doped RABiTS coated conductor tapes with Ca in an attempt to enhance the transport properties. By diffusing Ca into the YBCO film from a CaZrO3 overlayer, the authors have been able to preferentially dope the grain boundaries of the superconductor. Hence it has been possible to obtain doped tapes which do not have a significantly degraded T-c. The authors have measured the critical currents of doped and undoped samples over a wide range of temperature, magnetic field, and magnetic field angle in order to study the effect of Ca on the grain boundaries. The authors find that doping using short anneal times produces enhanced critical currents in large magnetic fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the authors investigate the electromagnetic properties of stacks of high temperature superconductor (HTS) coated conductors with a particular focus on calculating the total transport AC loss. The cross-section of superconducting cables and coils is often modeled as a two-dimensional stack of coated conductors, and these stacks can be used to estimate the AC loss of a practical device. This paper uses a symmetric two dimensional (2D) finite element model based on the H formulation, and a detailed investigation into the effects of a magnetic substrate on the transport AC loss of a stack is presented. The number of coated conductors in each stack is varied from 1 to 150, and three types of substrate are compared: non-magnetic weakly magnetic and strongly magnetic. The non-magnetic substrate model is comparable with results from existing models for the limiting cases of a single tape (Norris) and an infinite stack (Clem). The presence of a magnetic substrate increases the total AC loss of the stack, due to an increased localized magnetic flux density, and the stronger the magnetic material, the further the flux penetrates into the stack overall. The AC loss is calculated for certain tapes within the stack, and the differences and similarities between the losses throughout the stack are explained using the magnetic flux penetration and current density distributions in those tapes. The ferromagnetic loss of the substrate itself is found to be negligible in most cases, except for small magnitudes of current. Applying these findings to practical applications, where AC transport current is involved, superconducting coils should be wound where possible using coated conductors with a non-magnetic substrate to reduce the total AC loss in the coil. © 2011 Elsevier B.V. All rights reserved.