5 resultados para teneurin carboxyl terminal associated peptide 1
Resumo:
13 p.
Resumo:
Background: Vitamin K has been related to glucose metabolism, insulin sensitivity and diabetes. Because inflammation underlies all these metabolic conditions, it is plausible that the potential role of vitamin K in glucose metabolism occurs through the modulation of cytokines and related molecules. The purpose of the study was to assess the associations between dietary intake of vitamin K and peripheral adipokines and other metabolic risk markers related to insulin resistance and type 2 diabetes mellitus. Methods: Cross-sectional and longitudinal assessments of these associations in 510 elderly participants recruited in the PREDIMED centers of Reus and Barcelona (Spain). We determined 1-year changes in dietary phylloquinone intake estimated by food frequency questionnaires, serum inflammatory cytokines and other metabolic risk markers. Results: In the cross-sectional analysis at baseline no significant associations were found between dietary phylloquinone intake and the rest of metabolic risk markers evaluated, with exception of a negative association with plasminogen activator inhibitor-1. After 1-year of follow-up, subjects in the upper tertile of changes in dietary phylloquinone intake showed a greater reduction in ghrelin (-15.0%), glucose-dependent insulinotropic peptide (-12.9%), glucagon-like peptide-1 (-17.6%), IL-6 (-27.9%), leptin (-10.3%), TNF (-26.9%) and visfatin (-24.9%) plasma concentrations than those in the lowest tertile (all p<0.05). Conclusion: These results show that dietary phylloquinone intake is associated with an improvement of cytokines and other markers related to insulin resistance and diabetes, thus extending the potential protection by dietary phylloquinone on chronic inflammatory diseases.
Resumo:
Alpha-synuclein (Snca) plays a major role in Parkinson disease (PD). Circulating anti-Snca antibodies has been described in PD patients and healthy controls, but they have been poorly characterized. This study was designed to assess the prevalence of anti-Snca reactivity in human subjects carrying the LRRK2 mutation, idiopathic PD (iPD) patients, and healthy controls and to map the epitopes of the anti-Snca antibodies. Antibodies to Snca were detected by ELISA and immunoblotting using purified recombinant Snca in plasma from individuals carrying LRRK2 mutations (104), iPD patients (59), and healthy controls (83). Epitopes of antibodies were mapped using recombinant protein constructs comprising different regions of Snca. Clear positive anti-Snca reactivity showed no correlation with age, sex, years of evolution, or the disability scores for PD patients and anti-Snca reactivity was not prevalent in human patients with other neurological or autoimmune diseases. Thirteen of the positive individuals were carriers of LRRK2 mutations either non-manifesting (8 out 49 screened) or manifesting (5 positive out 55), three positive (out of 59) were iPD patients, and five positive (out of 83) were healthy controls. Epitope mapping showed that antibodies against the N-terminal (a.a. 1-60) or C-terminal (a.a. 109-140) regions of Snca predominate in LRRK2 mutation carriers and iPD patients, being N122 a critical amino acid for recognition by the anti-C-terminal directed antibodies. Anti-Snca circulating antibodies seem to cluster within families carrying the LRRK2 mutation indicating possible genetic or common environmental factors in the generation of anti-Snca antibodies. These results suggest that case-controls' studies are insufficient and further studies in family cohorts of patients and healthy controls should be undertaken, to progress in the understanding of the possible relationship of anti-Snca antibodies and PD patholog
Resumo:
1-42 beta-Amyloid (A beta(1-42)) peptide is a key molecule involved in the development of Alzheimer's disease. Some of its effects are manifested at the neuronal morphological level. These morphological changes involve loss of neurites due to cytoskeleton alterations. However, the mechanism of A beta(1-42) peptide activation of the neurodegenerative program is still poorly understood. Here, A beta(1-42) peptide-induced transduction of cellular death signals through the phosphatidylinositol 3-kinase (PI3K)/phosphoinositol- dependent kinase (PDK)/novel protein kinase C (nPKC)/Rac 1 axis is described. Furthermore, pharmacological inhibition of PDK1 and nPKC activities blocks Rac 1 activation and neuronal cell death. Our results provide insights into an unsuspected connection between PDK1, nPKCs and Rac 1 in the same signal-transduction pathway and points out nPKCs and Rac 1 as potential therapeutic targets to block the toxic effects of A beta(1-42) peptide in neurons.
Resumo:
The formation of cerebral senile plaques composed of amyloid beta peptide (A beta) is a fundamental feature of Alzheimer's disease (AD). Glial cells and more specifically microglia become reactive in the presence of A beta. In a triple transgenic model of AD (3 x Tg-AD), we found a significant increase in activated microglia at 12 (by 111%) and 18 (by 88%) months of age when compared with non-transgenic (non-Tg) controls. This microglial activation correlated with A beta plaque formation, and the activation in microglia was closely associated with A beta plaques and smaller A beta deposits. We also found a significant increase in the area density of resting microglia in 3 x Tg-AD animals both at plaque-free stage (at 9 months by 105%) and after the development of A plaques (at 12 months by 54% and at 18 months by 131%). Our results show for the first time that the increase in the density of resting microglia precedes both plaque formation and activation of microglia by extracellular A beta accumulation. We suggest that AD pathology triggers a complex microglial reaction: at the initial stages of the disease the number of resting microglia increases, as if in preparation for the ensuing activation in an attempt to fight the extracellular A beta load that is characteristic of the terminal stages of the disease. Cell Death and Disease (2010) 1, e1; doi:10.1038/cddis.2009.2; published online 14 January 2010