11 resultados para spine metastasis
Resumo:
Background: Implantation and growth of metastatic cancer cells at distant organs is promoted by inflammation-dependent mechanisms. A hepatic melanoma metastasis model where a majority of metastases are generated via interleukin-18-dependent mechanisms was used to test whether anti-inflammatory properties of resveratrol can interfere with mechanisms of metastasis. Methods: Two experimental treatment schedules were used: 1) Mice received one daily oral dose of 1 mg/kg resveratrol after cancer cell injection and the metastasis number and volume were determined on day 12. 2) Mice received one daily oral dose of 1 mg/kg resveratrol along the 5 days prior to the injection of cancer cells and both interleukin-18 (IL-18) concentration in the hepatic blood and microvascular retention of luciferase-transfected B16M cells were determined on the 18(th) hour. In vitro, primary cultured hepatic sinusoidal endothelial cells were treated with B16M-conditioned medium to mimic their in vivo activation by tumor-derived factors and the effect of resveratrol on IL-18 secretion, on vascular cell adhesion molecule-1 (VCAM-1) expression and on tumor cell adhesion were studied. The effect of resveratrol on melanoma cell activation by IL-18 was also studied. Results: Resveratrol remarkably inhibited hepatic retention and metastatic growth of melanoma cells by 50% and 75%, respectively. The mechanism involved IL-18 blockade at three levels: First, resveratrol prevented IL-18 augmentation in the blood of melanoma cell-infiltrated livers. Second, resveratrol inhibited IL-18-dependent expression of VCAM-1 by tumor-activated hepatic sinusoidal endothelium, preventing melanoma cell adhesion to the microvasculature. Third, resveratrol inhibited adhesion-and proliferation-stimulating effects of IL-18 on metastatic melanoma cells through hydrogen peroxide-dependent nuclear factor-kappaB translocation blockade on these cells. Conclusions: These results demonstrate multiple sites for therapeutic intervention using resveratrol within the prometastatic microenvironment generated by tumor-induced hepatic IL-18, and suggest a remarkable effect of resveratrol in the prevention of inflammation-dependent melanoma metastasis in the liver.
Resumo:
marketin plana
Resumo:
In estrogen receptor-negative breast cancer patients, metastatic relapse usually occurs in the lung and is responsible for the fatal outcome of the disease. Thus, a better understanding of the biology of metastasis is needed. In particular, biomarkers to identify patients that are at risk of lung metastasis could open the avenue for new therapeutic opportunities. Here we characterize the biological activity of RARRES3, a new metastasis suppressor gene whose reduced expression in the primary breast tumors identifies a subgroup of patients more likely to develop lung metastasis. We show that RARRES3 downregulation engages metastasis-initiating capabilities by facilitating adhesion of the tumor cells to the lung parenchyma. In addition, impaired tumor cell differentiation due to the loss of RARRES3 phospholipase A1/A2 activity also contributes to lung metastasis. Our results establish RARRES3 downregulation as a potential biomarker to identify patients at high risk of lung metastasis who might benefit from a differentiation treatment in the adjuvant programme.
Resumo:
The dimorphic fungus Candida albicans is able to trigger a cytokine-mediated pro-inflammatory response that increases tumor cell adhesion to hepatic endothelium and metastasis. To check the intraspecific differences in this effect, we used an in vitro murine model of hepatic response against C. albicans, which made clear that tumor cells adhered more to endothelium incubated with blastoconidia, both live and killed, than germ tubes. This finding was related to the higher carbohydrate/protein ratio found in blastoconidia. In fact, destruction of mannose ligand residues on the cell surface by metaperiodate treatment significantly reduced tumor cell adhesion induced. Moreover, we also noticed that the effect of clinical strains was greater than that of the reference one. This finding could not be explained by the carbohydrate/protein data, but to explain these differences between strains, we analyzed the expression level of ten genes (ADH1, APE3, IDH2, ENO1, FBA1, ILV5, PDI1, PGK1, QCR2 and TUF1) that code for the proteins identified previously in a mannoprotein-enriched pro-metastatic fraction of C. albicans. The results corroborated that their expression was higher in clinical strains than the reference one. To confirm the importance of the mannoprotein fraction, we also demonstrate that blocking the mannose receptor decreases the effect of C. albicans and its mannoproteins, inhibiting IL-18 synthesis and tumor cell adhesion increase by around 60%. These findings could be the first step towards a new treatment for solid organ cancers based on the role of the mannose receptor in C. albicans-induced tumor progression and metastasis.
Resumo:
8 p.
Resumo:
Background: Human melanoma frequently colonizes bone marrow (BM) since its earliest stage of systemic dissemination, prior to clinical metastasis occurrence. However, how melanoma cell adhesion and proliferation mechanisms are regulated within bone marrow stromal cell (BMSC) microenvironment remain unclear. Consistent with the prometastatic role of inflammatory and angiogenic factors, several studies have reported elevated levels of cyclooxygenase-2 (COX-2) in melanoma although its pathogenic role in bone marrow melanoma metastasis is unknown. Methods: Herein we analyzed the effect of cyclooxygenase-2 (COX-2) inhibitor celecoxib in a model of generalized BM dissemination of left cardiac ventricle-injected B16 melanoma (B16M) cells into healthy and bacterial endotoxin lipopolysaccharide (LPS)-pretreated mice to induce inflammation. In addition, B16M and human A375 melanoma (A375M) cells were exposed to conditioned media from basal and LPS-treated primary cultured murine and human BMSCs, and the contribution of COX-2 to the adhesion and proliferation of melanoma cells was also studied. Results: Mice given one single intravenous injection of LPS 6 hour prior to cancer cells significantly increased B16M metastasis in BM compared to untreated mice; however, administration of oral celecoxib reduced BM metastasis incidence and volume in healthy mice, and almost completely abrogated LPS-dependent melanoma metastases. In vitro, untreated and LPS-treated murine and human BMSC-conditioned medium (CM) increased VCAM-1-dependent BMSC adherence and proliferation of B16M and A375M cells, respectively, as compared to basal medium-treated melanoma cells. Addition of celecoxib to both B16M and A375M cells abolished adhesion and proliferation increments induced by BMSC-CM. TNF alpha and VEGF secretion increased in the supernatant of LPS-treated BMSCs; however, anti-VEGF neutralizing antibodies added to B16M and A375M cells prior to LPS-treated BMSC-CM resulted in a complete abrogation of both adhesion-and proliferation-stimulating effect of BMSC on melanoma cells. Conversely, recombinant VEGF increased adherence to BMSC and proliferation of both B16M and A375M cells, compared to basal medium-treated cells, while addition of celecoxib neutralized VEGF effects on melanoma. Recombinant TNFa induced B16M production of VEGF via COX-2-dependent mechanism. Moreover, exogenous PGE2 also increased B16M cell adhesion to immobilized recombinant VCAM-1. Conclusions: We demonstrate the contribution of VEGF-induced tumor COX-2 to the regulation of adhesion-and proliferation-stimulating effects of TNFa, from endotoxin-activated bone marrow stromal cells, on VLA-4-expressing
Resumo:
The development of techniques for oncogenomic analyses such as array comparative genomic hybridization, messenger RNA expression arrays and mutational screens have come to the fore in modern cancer research. Studies utilizing these techniques are able to highlight panels of genes that are altered in cancer. However, these candidate cancer genes must then be scrutinized to reveal whether they contribute to oncogenesis or are coincidental and non-causative. We present a computational method for the prioritization of candidate (i) proto-oncogenes and (ii) tumour suppressor genes from oncogenomic experiments. We constructed computational classifiers using different combinations of sequence and functional data including sequence conservation, protein domains and interactions, and regulatory data. We found that these classifiers are able to distinguish between known cancer genes and other human genes. Furthermore, the classifiers also discriminate candidate cancer genes from a recent mutational screen from other human genes. We provide a web-based facility through which cancer biologists may access our results and we propose computational cancer gene classification as a useful method of prioritizing candidate cancer genes identified in oncogenomic studies.
Resumo:
Background: The recruitment of vascular stromal and endothelial cells is an early event occurring during cancer cell growth at premetastatic niches, but how the microenvironment created by the initial three-dimensional (3D) growth of cancer cells affects their angiogenesis-stimulating potential is unclear. Methods: The proangiogenic profile of CT26 murine colorectal carcinoma cells was studied in seven-day cultured 3D-spheroids of <300 mu m in diameter, produced by the hanging-drop method to mimic the microenvironment of avascular micrometastases prior to hypoxia occurrence. Results: Spheroid-derived CT26 cells increased vascular endothelial growth factor (VEGF) secretion by 70%, which in turn increased the in vitro migration of primary cultured hepatic sinusoidal endothelium (HSE) cells by 2-fold. More importantly, spheroid-derived CT26 cells increased lymphocyte function associated antigen (LFA)-1-expressing cell fraction by 3-fold; and soluble intercellular adhesion molecule (ICAM)-1, given to spheroid-cultured CT26 cells, further increased VEGF secretion by 90%, via cyclooxygenase (COX)-2-dependent mechanism. Consistent with these findings, CT26 cancer cells significantly increased LFA-1 expression in non-hypoxic avascular micrometastases at their earliest inception within hepatic lobules in vivo; and angiogenesis also markedly increased in both subcutaneous tumors and hepatic metastases produced by spheroid-derived CT26 cells. Conclusion: 3D-growth per se enriched the proangiogenic phenotype of cancer cells growing as multicellular spheroids or as subclinical hepatic micrometastases. The contribution of integrin LFA-1 to VEGF secretion via COX-2 was a micro environmental-related mechanism leading to the pro-angiogenic activation of soluble ICAM-1-activated colorectal carcinoma cells. This mechanism may represent a new target for specific therapeutic strategies designed to block colorectal cancer cell growth at a subclinical micrometastatic stage within the liver.
Resumo:
Los mecanismos epigenéticos, entre los que está implicada la modificación covalente de histonas, son esenciales para el mantenimiento estable de la actividad génica en las células. Estos mecanismos también están implicados en la aparición de enfermedades como el cáncer colorrectal (CCR), siendo la metástasis hepática una de las formas más agresivas de la misma al producir una drástica disminución de la esperanza de vida del enfermo. Las modificaciones en las histonas, conocidas recientemente como código histónico, afectan a la estructura de la cromatina y juegan un papel importante en el desarrollo de la tumorogénesis. Sin embargo, se sabe poco acerca de aquellas células que adquieren la capacidad de metastatizar, y es por ello que en el presente trabajo se estudian las diferencias epigenéticas entre células tumorales primarias y células tumorales metastásicas para el patrón de trimetilación de la histona H3 en tres residuos diferentes del aminoácido lisina: lisina 4 (H3K4me3), lisina 9 (H3K9me3) y lisina 27 (H3K27me3).
Resumo:
252 p. : il.
Resumo:
Lymphangioleiomyomatosis (LAM) is a rare lung-metastasizing neoplasm caused by the proliferation of smooth muscle-like cells that commonly carry loss-of-function mutations in either the tuberous sclerosis complex 1 or 2 (TSC1 or TSC2) genes. While allosteric inhibition of the mechanistic target of rapamycin (mTOR) has shown substantial clinical benefit, complementary therapies are required to improve response and/or to treat specific patients. However, there is a lack of LAM biomarkers that could potentially be used to monitor the disease and to develop other targeted therapies. We hypothesized that the mediators of cancer metastasis to lung, particularly in breast cancer, also play a relevant role in LAM. Analyses across independent breast cancer datasets revealed associations between low TSC1/2 expression, altered mTOR complex 1 (mTORC1) pathway signaling, and metastasis to lung. Subsequently, immunohistochemical analyses of 23 LAM lesions revealed positivity in all cases for the lung metastasis mediators fascin 1 (FSCN1) and inhibitor of DNA binding 1 (ID1). Moreover, assessment of breast cancer stem or luminal progenitor cell biomarkers showed positivity in most LAM tissue for the aldehyde dehydrogenase 1 (ALDH1), integrin-beta 3 (ITGB3/CD61), and/or the sex-determining region Y-box 9 (SOX9) proteins. The immunohistochemical analyses also provided evidence of heterogeneity between and within LAM cases. The analysis of Tsc2-deficient cells revealed relative over-expression of FSCN1 and ID1; however, Tsc2-deficient cells did not show higher sensitivity to ID1-based cancer inhibitors. Collectively, the results of this study reveal novel LAM biomarkers linked to breast cancer metastasis to lung and to cell stemness, which in turn might guide the assessment of additional or complementary therapeutic opportunities for LAM.