7 resultados para magnetic nanoparticles
Resumo:
206 p.
Resumo:
Enzyme-catalyzed production of biodiesel is the object of extensive research due to the global shortage of fossil fuels and increased environmental concerns. Herein we report the preparation and main characteristics of a novel biocatalyst consisting of Cross-Linked Enzyme Aggregates (CLEAs) of Candida antarctica lipase B (CALB) which are covalently bound to magnetic nanoparticles, and tackle its use for the synthesis of biodiesel from non-edible vegetable and waste frying oils. For this purpose, insolubilized CALB was covalently cross-linked to magnetic nanoparticles of magnetite which the surface was functionalized with –NH2 groups. The resulting biocatalyst combines the relevant catalytic properties of CLEAs (as great stability and feasibility for their reutilization) and the magnetic character, and thus the final product (mCLEAs) are superparamagnetic particles of a robust catalyst which is more stable than the free enzyme, easily recoverable from the reaction medium and reusable for new catalytic cycles. We have studied the main properties of this biocatalyst and we have assessed its utility to catalyze transesterification reactions to obtain biodiesel from non-edible vegetable oils including unrefined soybean, jatropha and cameline, as well as waste frying oil. Using 1% mCLEAs (w/w of oil) conversions near 80% were routinely obtained at 30°C after 24 h of reaction, this value rising to 92% after 72 h. Moreover, the magnetic biocatalyst can be easily recovered from the reaction mixture and reused for at least ten consecutive cycles of 24 h without apparent loss of activity. The obtained results suggest that mCLEAs prepared from CALB can become a powerful biocatalyst for application at industrial scale with better performance than those currently available.
Resumo:
[Es]Actualmente ninguna área científica es ajena a la revolución de la nanociencia; las nanopartículas atraen el interés de muchos investigadores desde el punto de vista de la ciencia fundamental y para sus aplicaciones tecnológicas. Las nanopartículas ofrecen la posibilidad de fabricar sensores que sean capaces de detectar desde un virus hasta concentraciones de substancias patógenas que no pueden ser detectadas por los métodos convencionales. Hoy en día existes 82 tratamientos contra el cáncer basadas en la utilización de nanopartículas y los materiales composite con nanopartículas se utilizan como medio de protección frente la radiación del rango de microondas. En la rama de ciencias ambientales, las nanopartículas metálicas sirven como materiales anticontaminantes. En este trabajo se ha estudiado la estructura y las propiedades magnéticas de las nanopartículas de FeNi preparadas mediante el método de explosión eléctrica de hilo. Con la técnica de Rayos–X(DRX) se ha determinado que las nanopartículas se cristalizan en un sistema cúbico FCC con un parámetro de celda de 3.596 Å, también, se ha obtenido el tamaño de dominio coherente que es de 35 nm. La muestra se ha sometido a un programa de temperatura controlada para seguir la evolución de la estructura cristalina y del tamaño del cristal, tanto en atmósfera oxidante como en vacío. Para el aprendizaje de los microscopios utilizados en este trabajo, se ha asistido al curso “Fundamentos de microscopia electrónica de barrido y microanálisis” impartido por SGIker de la UPV/EHU. Se han empleado los microscopios electrónicos SEM y TEM para obtener imágenes de gran resolución de la muestra y analizar su contenido elemental. Partiendo de las imágenes sacadas por el SEM se ha calculado el valor medio del tamaño de las partículas de la muestra, 58 nm. Mediante el Mastersizer 2000 se ha medido el tamaño de las partículas y/o agregados por método de difracción láser, disgregando la muestra todo lo posible hasta conseguir el tamaño medio que se aproxime al de una sola partícula, 100nm. Por último, para la caracterización magnética se ha servido del VSM que mide el momento magnético de una muestra cuando ésta vibra en presencia de un campo magnético estático, consiguiendo una imanación de saturación de 125 emu/g. Hemos fabricado y caracterizado las nanopartículas magnéticas de hierro-níquel y los resultados obtenidos han sido enviados a un congreso especializado de ciencia de materiales (ISMANAM - 2013, Italia).
Resumo:
Fe3O4 and ZnxFe3-xO4 pure and doped magnetite magnetic nanoparticles (NPs) were prepared in aqueous solution (Series A) or in a water-ethyl alcohol mixture (Series B) by the co-precipitation method. Only one ferromagnetic resonance line was observed in all cases under consideration indicating that the materials are magnetically uniform. The shortfall in the resonance fields from 3.27 kOe (for the frequency of 9.5 GHz) expected for spheres can be understood taking into account the dipolar forces, magnetoelasticity, or magnetocrystalline anisotropy. All samples show non-zero low field absorption. For Series A samples the grain size decreases with an increase of the Zn content. In this case zero field absorption does not correlate with the changes of the grain size. For Series B samples the grain size and zero field absorption behavior correlate with each other. The highest zero-field absorption corresponded to 0.2 zinc concentration in both A and B series. High zero-field absorption of Fe3O4 ferrite magnetic NPs can be interesting for biomedical applications.
Resumo:
253 p.
Resumo:
"Click" chemistry has become an efficient avenue to unimolecular polymeric nanoparticles through the self-crosslinking of individual polymer chains containing appropriate functional groups. Herein we report the synthesis of ultra-small (7 nm in size) polymethyl methacrylate (PMMA) nanoparticles (NPs) by the "metal-free" cross-linking of PMMA-precursor chains prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization containing beta-ketoester functional groups. Intramolecular collapse was performed by the one-pot reaction of beta-ketoester moieties with alkyl diamines in tetrahydrofurane at r.t. (i.e., by enamine formation). The collapsing process was followed by size exclusion chromatography and by nuclear magnetic resonance spectroscopy. The size of the resulting PMMA-NPs was determined by dynamic light scattering. Enamine "click" chemistry increases the synthetic toolbox for the efficient synthesis of metal-free, ultra-small polymeric NPs.
Resumo:
Single-chain technology (SCT) allows the transformation of individual polymer chains to folded/collapsed unimolecular soft nanoparticles. In this work we contribute to the enlargement of the SCT toolbox by demonstrating the efficient synthesis of single-chain polymer nanoparticles (SCNPs) via intrachain amide formation. In particular, we exploit cross-linking between active methylene groups and isocyanate moieties as powerful "click" chemistry driving force for SCNP construction. By employing poly(methyl methacrylate)- (PMMA-) based copolymers bearing beta-ketoester units distributed randomly along the copolymer chains and bifunctional isocyanate cross-linkers, SCNPs were successfully synthesized at r.t. under appropriate reaction conditions. Characterization of the resulting SCNPs was carried out by means of a combination of techniques including size exclusion chromatography (SEC), infrared (IR) spectroscopy, proton nuclear magnetic resonance (H-1 NMR) spectroscopy, dynamic light scattering (DLS), and elemental analysis (EA).