9 resultados para lateral bipolar junction transistor (BJT)
Resumo:
11 p.
Resumo:
Background: While pain is frequently associated with unipolar depression, few studies have investigated the link between pain and bipolar depression. In the present study we estimated the prevalence and characteristics of pain among patients with bipolar depression treated by psychiatrists in their regular clinical practice. The study was designed to identify factors associated with the manifestation of pain in these patients.- Methods:Patients diagnosed with bipolar disorder (n=121) were selected to participate in a cross-sectional study in which DSM-IV-TR criteria were employed to identify depressive episodes. The patients were asked to describe any pain experienced during the study, and in the 6 weeks beforehand, by means of a Visual Analogical Scale (VAS).- Results: Over half of the bipolar depressed patients (51.2%, 95% CI: 41.9%–60.6%), and 2/3 of the female experienced concomitant pain. The pain was of moderate to severe intensity and prolonged duration, and it occurred at multiple sites, significantly limiting the patient’s everyday activities. The most important factors associated with the presence of pain were older age, sleep disorders and delayed diagnosis of bipolar disorder.- Conclusions: Chronic pain is common in bipolar depressed patients, and it is related to sleep disorders and delayed diagnosis of their disorder. More attention should be paid to study the presence of pain in bipolar depressed patients, in order to achieve more accurate diagnoses and to provide better treatment options.
Resumo:
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.
Resumo:
6 p.
Resumo:
Los lípidos de las membranas biológicas no son perfectamente miscibles entre sí, con frecuencia dan origen a “dominios” bidimensionales separados lateralmente cuando se resuspenden en agua. Las mezclas esfingomielina/dioleilfosfatidilcolina/colesterol dan origen con frecuencia a dominios, pero esto no ocurre cuando la esfingomielina es insaturada (p. ej. N-nervonil esfingomielina). En este trabajo se han aplicado técnicas calorimétricas y estructurales para estudiar el comportamiento de mezclas N-nervonil esfingomielina/dioleilfosfatidilcolina/colesterol/ceramida. En presencia de ceramida y de N-nervonil esfingomielina se observa formación de dominios laterales, al contrario de lo que ocurría en ausencia de ceramida.
Resumo:
Quantum well states of Ag films grown on stepped Au(111) surfaces are shown to undergo lateral scattering, in analogy with surface states of vicinal Ag(111). Applying angle resolved photoemission spectroscopy we observe quantum well bands with zone-folding and gap openings driven by surface/interface step lattice scattering. Experiments performed on a curved Au(111) substrate allow us to determine a subtle terrace-size effect, i.e., a fine step-density-dependent upward shift of quantum well bands. This energy shift is explained as mainly due to the periodically stepped crystal potential offset at the interface side of the film. Finally, the surface state of the stepped Ag film is analyzed with both photoemission and scanning tunneling microscopy. We observe that the stepped film interface also affects the surface state energy, which exhibits a larger terrace-size effect compared to surface states of bulk vicinal Ag(111) crystals
Resumo:
170 p.
Resumo:
Bipolar disorder (BD) and alcohol use disorders (AUDs) are usually comorbid, and both have been associated with significant neurocognitive impairment. Patients with the BD-AUD comorbidity (dual diagnosis) may have more severe neurocognitive deficits than those with a single diagnosis, but there is paucity of research in this area. To explore this hypothesis more thoroughly, we carried out a systematic literature review through January 2015. Eight studies have examined the effect of AUDs on the neurocognitive functioning of BD patients. Most studies found that BD patients with current or past history of comorbid AUDs show more severe impairments, especially in verbal memory and executive cognition, than their non-dual counterparts. Greater neurocognitive dysfunction is another facet of this severe comorbid presentation. Implications for clinical practice and research are discussed. Specifically, the application of holistic approaches, such as clinical staging and systems biology, may open new avenues of discoveries related to the BD-AUD comorbidity.
Resumo:
We investigate planar Josephson junctions where the intermediate spacer between the two superconductors is an hybrid structure made by a normal metal and a ferromagnet. The different behaviors of the S-N-S junctions with thicknesses of 50 nm in both Cu and Nb layers, and S-N/F-S junctions with 10 nm of Co, 50 nm of Cu and 50 nm of Nb are studied. In this way, we analyze the influence of the ferromagnetic exchange interaction on the proximity effect. A dramatic supression of the josephson critical current of the Nb-(Cu/Co)-Nb junctions is observed. We believe that the reason for this is due to the length scale of the superconducting correlations of the electrons and holes of the weak link is larger than the thickness of Cu/Co bilayer.