5 resultados para Wave analyses
Resumo:
Two previously reported DNA polymorphisms of sterol regulatory element binding transcription factor 1 (SREBP1) and liver X receptor alpha (LXRα) and two DNA polymorphisms of fatty acid desaturase 1 (FADS1) were evaluated for associations with fatty acids in brisket adipose tissue of Canadian cross-bred beef steers. The polymorphism of 84 bp insert/deletion in intron 5 of SREBP1 was significantly associated with the concentration of 9c C17:1 (P=0.013). The G>A single nucleotide polymorphism (SNP) in the exon 4 of LXRα gene was associated with the concentration of 9c, 11t C18:2 (P=0.04), sum of conjugated linoleic acids (CLA) (P=0.025) and 11c C20:1(P=0.042). Two DNA polymorphisms in the promoter region of FADS1, deletion/insertion of ->GTG in rs133053720 and SNP A>G in rs42187276, were significantly associated with concentrations of C17:0 iso, C17:0 ai, total branched chain fatty acids (BFA), 12t C18:1, 13t/14t C18:1, 15t C18:1, and 13c C18:1 (P<0.05). Further studies are needed to validate the associations and to delineate the roles of the gene polymorphisms in determining the fatty acid composition in beef tissues.
Resumo:
This paper presents the construction, mathematical modeling and testing of a scaled universal hydraulic Power Take-Off (PTO) device for Wave Energy Converters (WECs). A specific prototype and test bench were designed and built to carry out the tests. The results obtained from these tests were used to adjust an in-house mathematical model. The PTO was initially designed to be coupled to a scaled wave energy capture device with a low speed and high torque oscillating motion and high power fluctuations. Any Energy Capture Device (ECD) that fulfils these requirements can be coupled to this PTO, provided that its scale is adequately defined depending on the rated power of the full scale prototype. The initial calibration included estimation of the pressure drops in the different components, the pressurization time of the oil inside the hydraulic cylinders and the volumetric efficiency of the complete circuit. Since the overall efficiency measured during the tests ranged from 0.69 to 0.8 and the dynamic performance of the PTO was satisfactory, the results are really promising and it is believed that this solution might prove effective in real devices.
Resumo:
The objective of the work was to develop a non-invasive methodology for image acquisition, processing and nonlinear trajectory analysis of the collective fish response to a stochastic event. Object detection and motion estimation were performed by an optical flow algorithm in order to detect moving fish and simultaneously eliminate background, noise and artifacts. The Entropy and the Fractal Dimension (FD) of the trajectory followed by the centroids of the groups of fish were calculated using Shannon and permutation Entropy and the Katz, Higuchi and Katz-Castiglioni's FD algorithms respectively. The methodology was tested on three case groups of European sea bass (Dicentrarchus labrax), two of which were similar (C1 control and C2 tagged fish) and very different from the third (C3, tagged fish submerged in methylmercury contaminated water). The results indicate that Shannon entropy and Katz-Castiglioni were the most sensitive algorithms and proved to be promising tools for the non-invasive identification and quantification of differences in fish responses. In conclusion, we believe that this methodology has the potential to be embedded in online/real time architecture for contaminant monitoring programs in the aquaculture industry.
Resumo:
One of the key systems of a Wave Energy Converter for extraction of wave energy is the Power Take-Off (PTO) device. This device transforms the mechanical energy of a moving body into electrical energy. This paper describes the model of an innovative PTO based on independently activated double-acting hydraulic cylinders array. The model has been developed using a simulation tool, based on a port-based approach to model hydraulics systems. The components and subsystems used in the model have been parameterized as real components and their values experimentally obtained from an existing prototype. In fact, the model takes into account most of the hydraulic losses of each component. The simulations show the flexibility to apply different restraining torques to the input movement depending on the geometrical configuration and the hydraulic cylinders on duty, easily modified by a control law. The combination of these two actions allows suitable flexibility to adapt the device to different sea states whilst optimizing the energy extraction. The model has been validated using a real test bench showing good correlations between simulation and experimental tests.
Resumo:
4th International Workshop on Transverse Polisarization Phenomena in Hard Processes (TRANSVERSITY 2014)