4 resultados para Textured insole, Standing balance, Aging, Somatosensory, Postural sway
Resumo:
[EUS] Artikulo honetan euskal isurialde atlantiarreko bi munitzipioetan martxan jarritako garapen lokaleko proiektuak aztertzen dira. Esperientzia horiek beherapen industrialean dagoen eskualde batean landa garapenak izan dezakeen egokitasunari buruz pentsatzera bultzatzen dute.
Resumo:
The use of a contractive fiscal policy in times of crisis and austerity can lead to so many different opinion streams which can be, at the same time, very opposite with each other. The high budget deficit in some economies has forced the eurozone to implement austerity policies, meaning that the debate is now more alive than ever. Therefore, the aim of this paper is to analyze the effects of the implementation of a contractive policy during a crisis considering the case of Spain. The positive effects in financial markets were noticed due to the decrease of the risk premium and the payment of interests, and also thanks to the increase of trust towards Spain. This way, the reduction of the Spanish deficit was remarkable but in any case there is still a long path until reaching the limit of 3% of the GDP. Also, in the short run it is possible to see that the consolidation had contractive effects in the economic activity but, in the long run, the debate is among the defenders of the fact that austerity is followed by a growing period and the ones opposing to it due to the drowning effect produced by it.
Resumo:
An acoustic plasmon is predicted to occur, in addition to the conventional two-dimensional (2D) plasmon, as the collective motion of a system of two types of electronic carriers coexisting in the same 2D band of extrinsic (doped or gated) graphene. The origin of this novel mode stems from the anisotropy present in the graphene band structure near the Dirac points K and K'. This anisotropy allows for the coexistence of carriers moving with two distinct Fermi velocities along the Gamma K and Gamma K' directions, which leads to two modes of collective oscillation: one mode in which the two types of carriers oscillate in phase with one another (this is the conventional 2D graphene plasmon, which at long wavelengths (q -> 0) has the same dispersion, q(1/2), as the conventional 2D plasmon of a 2D free electron gas), and the other mode found here corresponds to a low-frequency acoustic oscillation (whose energy exhibits at long-wavelengths a linear dependence on the 2D wavenumber q) in which the two types of carriers oscillate out of phase. This prediction represents a realization of acoustic
Resumo:
Myotonic dystrophy type 1 (DM1 or Steinert's disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3' untranslated region (UTR) of the Dystrophia ll/Iyotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9 (CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular degeneration seen in DM patients, highlighting the similarities found with muscle aging.