12 resultados para TRIMELLITIC ACID
Resumo:
[EN]A comprehensive evaluation of the fatty acid composition of subcutaneous adipose tissue from beef cattle produced in western Canada was undertaken to determine if the current Canadian grading system is able to distinguish classes of animals with value added potential due to their fatty acid composition. Grades included youthful Canadian Yield Grade 1 A/AA beef, under (YUTM) and over (YOTM) 30 mo of age and the four mature grades (D1, D2, D2 and D4). Subcutaneous fat between the 12th and 13th ribs over the longissimus muscle was obtained from 18_21 animals per grade. Fatty acids were analyzed using a combination of silver-ion HPLC and GC with a highly polar 100 m column. There were no differences in total trans-18:1 content amongst grades, but adipose tissue from grade D1, D2 and D4 had more 11t-18:1 than YUTM (PB0.05), whereas adipose tissue from YUTM carcasses had more 10t-18:1 than all other grades (PB0.05). Adipose tissue from YUTM carcasses also had less total CLA (PB0.05) than the D grades, mainly due to a lower level of 9c,11t-CLA, but they had slightly more 7t,9c-CLA and 10t,12c-CLA (PB0.05). Adipose tissue from YOTM and D grades contained more n-3 fatty acids relative to YUTM (0.56% vs. 0.29%; PB0.05) and lower n-6:n-3 ratios (PB0.05). Overall, older animals (YOTM and D grades) had adipose tissue compositions with higher levels of fatty acids with reported health benefits. Taken together, these higher levels may provide opportunities for value added marketing if regulatory authorities allow claims for their enrichment based on demonstrated health benefits. Higher concentrations of beneficial fatty acids, however, need to be considered within the context of the complete fatty acid profile and it would be important to demonstrate their advantages in the presence of relatively high levels of saturated fatty acids.
Resumo:
[EN]A survey of Canadian retail beef was undertaken with emphasis on the trans fatty acid (TFA) and conjugated linoleic acid (CLA) isomers, and compared with current health recommendations. Thirty striploin steaks were collected in the winter and summer from major grocery stores in Calgary (Alberta, Canada). Steak fatty acid compositions (backfat and longissimus lumborum muscle analysed separately) showed minor seasonal differences with lower total saturates (PB0.05) and higher total monounsaturates (PB 0.01) in winter, but no differences in total polyunsaturated fatty acids. The ratio of n-6 and n-3 polyunsaturated fatty acid in longissimus lumborum averaged 5.8. The average TFA content in longissimus lumborum was 0.128 g 100 g_1 serving size, and 10t-18:1 was found to be the predominant isomer (32% of total trans), while vaccenic acid was second most abundant (15% of total trans). The CLA content in longissimus lumborum was similar to that of backfat, ranging from 0.43 to 0.60% of total fatty acids and rumenic acid represented 60% of total isomers. Overall, there is still room for improvement in the saturated, mono- and polyunsaturated fatty acid composition of Canadian beef to meet general dietary guidelines for human consumption and additional targets should include reducing 10t-18:1 while increasing both rumenic and vaccenic acids.
Resumo:
[EN]In an attempt to predict intramuscular fatty acid composition using easily accessible fat depots, between-tissue correlations were studied in 75 Asturiana de los Valles bulls with different levels of muscular hypertrophy, and 25 Asturiana de la Montan˜ a bulls. Trans-18:1 in intramuscular fat was highly and positively correlated with levels in subcutaneous and intermuscular fats, while levels of total n-3 were not correlated. Predicting intramuscular fatty acid composition using easily accessible depots is thus possible for some fatty acids exhibiting high between-tissue correlations (e.g., trans-18:1) but breed and tissue specific deposition may limit this for others (e.g., n-3 fatty acids).
Resumo:
[EN]Trans fatty acids are found naturally in foods, particularly in those derived from ruminant animals, such as beef and dairy cattle. Over the past few decades, human consumption of trans fatty acids has increased, but this has been mainly from products containing partially hydrogenated vegetable oils. The correlation of trans fatty acid consumption with diseases such as coronary heart disease has been cause for concern, and led to recommendations to reduce their consumption. Trans fatty acids, however, have differing effects on human health. Therefore, in foods produced from ruminant animals, it is important to know their trans fatty acid composition, and how to enrich or deplete fatty acids that have positive or negative health effects. This review will cover the analysis of trans fatty acids in beef, their origin, how to manipulate their concentrations, and give a brief overview of their health effects.
Resumo:
Two previously reported DNA polymorphisms of sterol regulatory element binding transcription factor 1 (SREBP1) and liver X receptor alpha (LXRα) and two DNA polymorphisms of fatty acid desaturase 1 (FADS1) were evaluated for associations with fatty acids in brisket adipose tissue of Canadian cross-bred beef steers. The polymorphism of 84 bp insert/deletion in intron 5 of SREBP1 was significantly associated with the concentration of 9c C17:1 (P=0.013). The G>A single nucleotide polymorphism (SNP) in the exon 4 of LXRα gene was associated with the concentration of 9c, 11t C18:2 (P=0.04), sum of conjugated linoleic acids (CLA) (P=0.025) and 11c C20:1(P=0.042). Two DNA polymorphisms in the promoter region of FADS1, deletion/insertion of ->GTG in rs133053720 and SNP A>G in rs42187276, were significantly associated with concentrations of C17:0 iso, C17:0 ai, total branched chain fatty acids (BFA), 12t C18:1, 13t/14t C18:1, 15t C18:1, and 13c C18:1 (P<0.05). Further studies are needed to validate the associations and to delineate the roles of the gene polymorphisms in determining the fatty acid composition in beef tissues.
Resumo:
2.4. The author may post the VoR version of the article (in PDF or HTML form) in the Institutional Repository of the institution in which the author worked at the time the article was first submitted, or (for appropriate journals) in PubMed Central or UK PubMed Central or arXiv, no sooner than one year after first publication of the article in the Journal, subject to file availability and provided the posting includes a prominent statement of the full bibliographical details, a copyright notice in the name of the copyright holder (Cambridge University Press or the sponsoring Society, as appropriate), and a link to the online edition of the Journal at Cambridge Journals Online.
Resumo:
Dedicated to Prof. Julio Alvarez-Builla on the occasion of his 65th anniversary.
Resumo:
172 p.
Resumo:
207 p.
Resumo:
295 p.
Resumo:
Self-amplifying RNA or RNA replicon is a form of nucleic acid-based vaccine derived from either positive-strand or negative-strand RNA viruses. The gene sequences encoding structural proteins in these RNA viruses are replaced by mRNA encoding antigens of interest as well as by RNA polymerase for replication and transcription. This kind of vaccine has been successfully assayed with many different antigens as vaccines candidates, and has been shown to be potent in several animal species, including mice, nonhuman primates, and humans. A key challenge to realizing the broad potential of self-amplifying vaccines is the need for safe and effective delivery methods. Ideally, an RNA nanocarrier should provide protection from blood nucleases and extended blood circulation, which ultimately would increase the possibility of reaching the target tissue. The delivery system must then be internalized by the target cell and, upon receptor-mediated endocytosis, must be able to escape from the endosomal compartment into the cell cytoplasm, where the RNA machinery is located, while avoiding degradation by lysosomal enzymes. Further, delivery systems for systemic administration ought to be well tolerated upon administration. They should be safe, enabling the multiadministration treatment modalities required for improved clinical outcomes and, from a developmental point of view, production of large batches with reproducible specifications is also desirable. In this review, the concept of self-amplifying RNA vaccines and the most promising lipid-based delivery systems are discussed.
Resumo:
Background: The impact of nano-scaled materials on photosynthetic organisms needs to be evaluated. Plants represent the largest interface between the environment and biosphere, so understanding how nanoparticles affect them is especially relevant for environmental assessments. Nanotoxicology studies in plants allude to quantum size effects and other properties specific of the nano-stage to explain increased toxicity respect to bulk compounds. However, gene expression profiles after exposure to nanoparticles and other sources of environmental stress have not been compared and the impact on plant defence has not been analysed. Results: Arabidopsis plants were exposed to TiO2-nanoparticles, Ag-nanoparticles, and multi-walled carbon nanotubes as well as different sources of biotic (microbial pathogens) or abiotic (saline, drought, or wounding) stresses. Changes in gene expression profiles and plant phenotypic responses were evaluated. Transcriptome analysis shows similarity of expression patterns for all plants exposed to nanoparticles and a low impact on gene expression compared to other stress inducers. Nanoparticle exposure repressed transcriptional responses to microbial pathogens, resulting in increased bacterial colonization during an experimental infection. Inhibition of root hair development and transcriptional patterns characteristic of phosphate starvation response were also observed. The exogenous addition of salicylic acid prevented some nano-specific transcriptional and phenotypic effects, including the reduction in root hair formation and the colonization of distal leaves by bacteria. Conclusions: This study integrates the effect of nanoparticles on gene expression with plant responses to major sources of environmental stress and paves the way to remediate the impact of these potentially damaging compounds through hormonal priming.