6 resultados para Planets -- Atmospheres
Resumo:
A novel self-referencing fiber optic intensity sensor based on bending losses of a partially polished polymer optical fiber (POF) coupler is presented. The coupling ratio (K) depends on the external liquid in which the sensor is immersed. It is possible to distinguish between different liquids and to detect their presence. Experimental results for the most usual liquids found in industry, like water and oil, are given. K value increases up to 10% from the nominal value depending on the liquid. Sensor temperature dependence has also been studied for a range from 25 degrees C (environmental condition) to 50 degrees C. Any sector requiring liquid level measurements in flammable atmospheres can benefit from this intrinsically safe technology.
Resumo:
Hydrogen is the only atom for which the Schr odinger equation is solvable. Consisting only of a proton and an electron, hydrogen is the lightest element and, nevertheless, is far from being simple. Under ambient conditions, it forms diatomic molecules H2 in gas phase, but di erent temperature and pressures lead to a complex phase diagram, which is not completely known yet. Solid hydrogen was rst documented in 1899 [1] and was found to be isolating. At higher pressures, however, hydrogen can be metallized. In 1935 Wigner and Huntington predicted that the metallization pressure would be 25 GPa [2], where molecules would disociate to form a monoatomic metal, as alkali metals that lie below hydrogen in the periodic table. The prediction of the metallization pressure turned out to be wrong: metallic hydrogen has not been found yet, even under a pressure as high as 320 GPa. Nevertheless, extrapolations based on optical measurements suggest that a metallic phase may be attained at 450 GPa [3]. The interest of material scientist in metallic hydrogen can be attributed, at least to a great extent, to Ashcroft, who in 1968 suggested that such a system could be a hightemperature superconductor [4]. The temperature at which this material would exhibit a transition from a superconducting to a non-superconducting state (Tc) was estimated to be around room temperature. The implications of such a statement are very interesting in the eld of astrophysics: in planets that contain a big quantity of hydrogen and whose temperature is below Tc, superconducting hydrogen may be found, specially at the center, where the gravitational pressure is high. This might be the case of Jupiter, whose proportion of hydrogen is about 90%. There are also speculations suggesting that the high magnetic eld of Jupiter is due to persistent currents related to the superconducting phase [5]. Metallization and superconductivity of hydrogen has puzzled scientists for decades, and the community is trying to answer several questions. For instance, what is the structure of hydrogen at very high pressures? Or a more general one: what is the maximum Tc a phonon-mediated superconductor can have [6]? A great experimental e ort has been carried out pursuing metallic hydrogen and trying to answer the questions above; however, the characterization of solid phases of hydrogen is a hard task. Achieving the high pressures needed to get the sought phases requires advanced technologies. Diamond anvil cells (DAC) are commonly used devices. These devices consist of two diamonds with a tip of small area; for this reason, when a force is applied, the pressure exerted is very big. This pressure is uniaxial, but it can be turned into hydrostatic pressure using transmitting media. Nowadays, this method makes it possible to reach pressures higher than 300 GPa, but even at this pressure hydrogen does not show metallic properties. A recently developed technique that is an improvement of DAC can reach pressures as high as 600 GPa [7], so it is a promising step forward in high pressure physics. Another drawback is that the electronic density of the structures is so low that X-ray di raction patterns have low resolution. For these reasons, ab initio studies are an important source of knowledge in this eld, within their limitations. When treating hydrogen, there are many subtleties in the calculations: as the atoms are so light, the ions forming the crystalline lattice have signi cant displacements even when temperatures are very low, and even at T=0 K, due to Heisenberg's uncertainty principle. Thus, the energy corresponding to this zero-point (ZP) motion is signi cant and has to be included in an accurate determination of the most stable phase. This has been done including ZP vibrational energies within the harmonic approximation for a range of pressures and at T=0 K, giving rise to a series of structures that are stable in their respective pressure ranges [8]. Very recently, a treatment of the phases of hydrogen that includes anharmonicity in ZP energies has suggested that relative stability of the phases may change with respect to the calculations within the harmonic approximation [9]. Many of the proposed structures for solid hydrogen have been investigated. Particularly, the Cmca-4 structure, which was found to be the stable one from 385-490 GPa [8], is metallic. Calculations for this structure, within the harmonic approximation for the ionic motion, predict a Tc up to 242 K at 450 GPa [10]. Nonetheless, due to the big ionic displacements, the harmonic approximation may not su ce to describe correctly the system. The aim of this work is to apply a recently developed method to treat anharmonicity, the stochastic self-consistent harmonic approximation (SSCHA) [11], to Cmca-4 metallic hydrogen. This way, we will be able to study the e ects of anharmonicity in the phonon spectrum and to try to understand the changes it may provoque in the value of Tc. The work is structured as follows. First we present the theoretical basis of the calculations: Density Functional Theory (DFT) for the electronic calculations, phonons in the harmonic approximation and the SSCHA. Then we apply these methods to Cmca-4 hydrogen and we discuss the results obtained. In the last chapter we draw some conclusions and propose possible future work.
Resumo:
Geology is the science that studies the Earth, its composition, structure and origin in addition to past and present phenomena that leave their mark on rocks. So why does society need geologists? Some of the main reasons are listed below: - Geologists compile and interpret information about the earth’s surface and subsoil, which allows us to establish the planet’s past history, any foreseeable changes and its relationship with the rest of the solar system. - Society needs natural resources (metals, non-metals, water and fossil fuels) to survive. The work of geologists is therefore a key part of finding new deposits and establishing a guide for exploring and managing resources in an environmentally-friendly way. - The creation of geological maps allows us to identify potential risk areas and survey different land uses; in other words, they make an essential contribution to land planning and proposing sustainable development strategies in a region. - Learning about Geology and the proper use of geological information contributes to saving lives and reducing financial loss caused by natural catastrophes such as earthquakes, tsunamis, volcanic eruptions, flooding and landslides, while also helping to develop construction projects, public works, etc. Through the proposed activities we aim to explain some of the basic elements of the different specialities within the field of Geological Sciences. In order to do this, four sessions have been organised that will allow for a quick insight into the fields of Palaeontology, Mineralogy, Petrology and Tectonics.
Resumo:
Geology is the science that studies the Earth, its composition, structure and origin in addition to past and present phenomena that leave their mark on rocks. So why does society need geologists? Some of the main reasons are listed below: - Geologists compile and interpret information about the earth’s surface and subsoil, which allows us to establish the planet’s past history, any foreseeable changes and its relationship with the rest of the solar system. - Society needs natural resources (metals, non-metals, water and fossil fuels) to survive. The work of geologists is therefore a key part of finding new deposits and establishing a guide for exploring and managing resources in an environmentally-friendly way. - The creation of geological maps allows us to identify potential risk areas and survey different land uses; in other words, they make an essential contribution to land planning and proposing sustainable development strategies in a region. - Learning about Geology and the proper use of geological information contributes to saving lives and reducing financial loss caused by natural catastrophes such as earthquakes, tsunamis, volcanic eruptions, flooding and landslides, while also helping to develop construction projects, public works, etc. Through the proposed activities we aim to explain some of the basic elements of the different specialities within the field of Geological Sciences. In order to do this, four sessions have been organised that will allow for a quick insight into the fields of Palaeontology, Mineralogy, Petrology and Tectonics.
Resumo:
Lipids are essential constituents of contemporary living cells, serving as structural molecules that are necessary to form membranous compartments. Amphiphilic lipid-like molecules may also have contributed to prebiotic chemical evolution by promoting the synthesis, aggregation and cooperative encapsulation of other biomolecules. The resulting compartments would allow systems of molecules to be maintained that represent microscopic experiments in a natural version of combinatorial chemistry. Here we address these possibilities and describe recent results related to interactions between amphiphiles and other biomolecules during early evolution toward the first living cells.
Resumo:
[ES] La astrología grecorromana es un código lingüístico con signos (planetas, signos del Zodíaco), y con leyes de interconexión entre ellos (eclíptica, aspectos, casas, límites), y ha de ser valorada no sólo desde la perspectiva de su cientificidad, sino desde la de sus funciones para el individuo y la sociedad: es un conocimiento del futuro singular que afecta a la totalidad de lo implicado, y en la totalidad de sus dimensiones. Suple así el conocimiento de la ciencia antigua, que no fue capaz de incluir ni lo futuro ni lo singular. La astrología integra al individuo en la comunidad, integrándolo previamente en su universo semántico. Cosmos, mundo humano y mundo natural se armonizan totalmente.