6 resultados para Phase rule and equilibrium.
Resumo:
This paper relies on the concept of next generation matrix defined ad hoc for a new proposed extended SEIR model referred to as SI(n)R-model to study its stability. The model includes n successive stages of infectious subpopulations, each one acting at the exposed subpopulation of the next infectious stage in a cascade global disposal where each infectious population acts as the exposed subpopulation of the next infectious stage. The model also has internal delays which characterize the time intervals of the coupling of the susceptible dynamics with the infectious populations of the various cascade infectious stages. Since the susceptible subpopulation is common, and then unique, to all the infectious stages, its coupled dynamic action on each of those stages is modeled with an increasing delay as the infectious stage index increases from 1 to n. The physical interpretation of the model is that the dynamics of the disease exhibits different stages in which the infectivity and the mortality rates vary as the individual numbers go through the process of recovery, each stage with a characteristic average time.
Resumo:
We generalise and extend the work of Iñarra and Laruelle (2011) by studying two person symmetric evolutionary games with two strategies, a heterogenous population with two possible types of individuals and incomplete information. Comparing such games with their classic homogeneous version vith complete information found in the literature, we show that for the class of anti-coordination games the only evolutionarily stable strategy vanishes. Instead, we find infinite neutrally stable strategies. We also model the evolutionary process using two different replicator dynamics setups, each with a different inheritance rule, and we show that both lead to the same results with respect to stability.
Resumo:
This paper uses a structural approach based on the indirect inference principle to estimate a standard version of the new Keynesian monetary (NKM) model augmented with term structure using both revised and real-time data. The estimation results show that the term spread and policy inertia are both important determinants of the U.S. estimated monetary policy rule whereas the persistence of shocks plays a small but significant role when revised and real-time data of output and inflation are both considered. More importantly, the relative importance of term spread and persistent shocks in the policy rule and the shock transmission mechanism drastically change when it is taken into account that real-time data are not well behaved.
Resumo:
We conduct experiments to investigate the effects of different majority requirements on bargaining outcomes in small and large groups. In particular, we use a Baron-Ferejohn protocol and investigate the effects of decision rules on delay (number of bargaining rounds needed to reach agreement) and measures of "fairness" (inclusiveness of coalitions, equality of the distribution within a coalition). We find that larger groups and unanimity rule are associated with significantly larger decision making costs in the sense that first round proposals more often fail, leading to more costly delay. The higher rate of failure under unanimity rule and in large groups is a combination of three facts: (1) in these conditions, a larger number of individuals must agree, (2) an important fraction of individuals reject offers below the equal share, and (3) proposers demand more (relative to the equal share) in large groups.
Resumo:
The surface electronic structure of the narrow-gap seminconductor BiTeI exhibits a large Rashba-splitting which strongly depends on the surface termination. Here we report on a detailed investigation of the surface morphology and electronic properties of cleaved BiTeI single crystals by scanning tunneling microscopy, photoelectron spectroscopy (ARPES, XPS), electron diffraction (SPA-LEED) and density functional theory calculations. Our measurements confirm a previously reported coexistence of Te- and I-terminated surface areas
Resumo:
In ultracold atoms settings, inelastic light scattering is a preeminent technique to reveal static and dynamic properties at nonzero momentum. In this work, we investigate an array of one-dimensional trapped Bose gases, by measuring both the energy and the momentum imparted to the system via light scattering experiments. The measurements are performed in the weak perturbation regime, where these two quantities-the energy and momentum transferred-are expected to be related to the dynamic structure factor of the system. We discuss this relation, with special attention to the role of in-trap dynamics on the transferred momentum.