7 resultados para Mytilus galloprovincialis
Resumo:
[ENG]Aiming at an integrated and mechanistic view of the early biological effects of selected metals in the marine sentinel organism Mytilus galloprovincialis, we exposed mussels for 48 hours to 50, 100 and 200 nM solutions of equimolar Cd, Cu and Hg salts and measured cytological and molecular biomarkers in parallel. Focusing on the mussel gills, first target of toxic water contaminants and actively proliferating tissue, we detected significant dose-related increases of cells with micronuclei and other nuclear abnormalities in the treated mussels, with differences in the bioconcentration of the three metals determined in the mussel flesh by atomic absorption spectrometry. Gene expression profiles, determined in the same individual gills in parallel, revealed some transcriptional changes at the 50 nM dose, and substantial increases of differentially expressed genes at the 100 and 200 nM doses, with roughly similar amounts of up- and down-regulated genes. The functional annotation of gill transcripts with consistent expression trends and significantly altered at least in one dose point disclosed the complexity of the induced cell response. The most evident transcriptional changes concerned protein synthesis and turnover, ion homeostasis, cell cycle regulation and apoptosis, and intracellular trafficking (transcript sequences denoting heat shock proteins, metal binding thioneins, sequestosome 1 and proteasome subunits, and GADD45 exemplify up-regulated genes while transcript sequences denoting actin, tubulins and the apoptosis inhibitor 1 exemplify down-regulated genes). Overall, nanomolar doses of co-occurring free metal ions have induced significant structural and functional changes in the mussel gills: the intensity of response to the stimulus measured in laboratory supports the additional validation of molecular markers of metal exposure to be used in Mussel Watch programs
Resumo:
[es]En las últimas décadas está proliferando la creación de nuevos Bancos de Especímenes Ambientales. Es fundamental en ellos disponer de métodos de congelación que garanticen la óptima conservación de las muestras, de forma que sean fiables los resultados obt enidos en las diversas investigaciones realizadas con ellas, para ser utilizadas por futuros investigadores. Este trabajo se ha realizado para conseguir dicho objetivo en relación a el BBEBB (Biscay Bay Environmental Bioespecimen Bank) de la Estación Marin a de Plentzia (PIE - U P V/EHU). Como muestra se han utilizado mejillones ( Mytilus galloprovincialis ) y mediante análisis bioquímico e histoquímico se ha estudiado la variabilidad producida por diferentes métodos de congelación en una serie de biomarcadores pr eviamente seleccionados. La conclusión ha sido que los biomarcadores varían dependiendo del método de congelación. Pero, en general, de forma poco significativa. Por lo tanto cualquiera de los procedimientos de congelación puede ser utilizado en los difere ntes biobancos con garantías. No obstante y para una mayor fiabilidad es conveniente reincidir en este trabajo utilizando otras variables como animales de localidades y/o épocas diferentes
Resumo:
INGLÉS:Juvenile mussels (Mytilus galloprovincialis) were collected and maintained under restrictive and optimal feeding conditions. After 7 months maintenance fast and slow growth individuals were selected for study of the effect of diet quality on selection efficiencies and absorption of food in fast and slow growth mussels. The objective of this experiment was to confirm that the physiological components responsible for the differentiation were able to vary according to the environmental conditions. The analysis of physiological traits indicates that under conditions of abundant food efficiency and absorption efficiences are the main factors that explain the differences in growth. Under conditions of restricted food are physiological differences that give rise to differences in growth.
Resumo:
294 p.
Resumo:
Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag.
Resumo:
In the last decades the creation of new Environmental Specimen Banks (ESB) is increasing due to the necessity of knowing the effects of pollutants in both the environment and human populations. ESBs analyze and store samples in order to understand the effects of chemicals, emerging substances and the environmental changes in biota. For a correct analysis of the effect induced by these variables, there is a need to add biological endpoints, such as biomarkers, to the endpoints based on chemical approaches which have being used until now. It is essential to adapt ESB´s sampling strategies in order to enable scientists to apply new biological methods. The present study was performed to obtain biochemical endpoints from samples stored in the BBEBB (Biscay Bay Environmental Biospecimen Bank) of the Marine Station of Plentzia (PIE - UPV/EHU). The main objective of the present work was to study the variability caused in biochemical biomarkers by different processing methods in mussels (Mytilus galloprovincialis) from two localities (Plentzia and Arriluze) with different pollution history. It can be concluded that the selected biomarkers (glutathione S-transferase and acetylcholinesterase) can be accurately measured in samples stored for years in the ESBs. The results also allowed the discrimination of both sampling sites. However, in a further step, the threshold levels and baseline values should be characterized for a correct interpretation of the results in relation to the assessment of the ecosystem health status.
Resumo:
Mytillus galloprovincialis muskuilua gazitasun ezberdinetara jarri da aklaramendu tasan honek duen efektua ikusteko asmoz. Erabilitako gazitasunak ur gazia %100ean, %70ean eta %40an izan dira eta hiru esperimentu ezberdin jarraituz atera dira ondorioak. Hiru esperimentu hauetan muskuiluen aklaramendu tasak neurtu dira baldintza desberdinetan eta hirugarren esperimentuan NPS kontzentrazioaren neurketa kolorimetrikoa ere egin da. Ikusi da %70ko diluzioak ez duela aklaramendu tasan eraginik sortzen kasu guztietan eta %40ko diluzioak ere ez duela eraginik sortzen soilik aldaketa graduala bada. %40 gazitasunean, aldaketa gradualik gabe, mantendu diren muskuiluen berehalako erantzuna balbaren itxiera izan da, aklaratzeari utziz, baina denborarekin aklaratzeko gaitasuna berreskuratu dute. Aklimatazio horren arrazoia aurkitzeko asmoz, azkeneko esperimentuan NPS edo aminoazido askeen determinazioa egin da, bai brankian bai muskulu abduktorean. Gazitasuna jaisten denean NPSen kontzentrazioa behera egiten duela ikusi da muskuiluetan, bolumen zelularra erregulatuz. Efektu hau muskulu abduktorean adierazgarritasun handiagoarekin nabaritu da.