6 resultados para Muscle Soreness
Resumo:
[EN]A survey of Canadian retail beef was undertaken with emphasis on the trans fatty acid (TFA) and conjugated linoleic acid (CLA) isomers, and compared with current health recommendations. Thirty striploin steaks were collected in the winter and summer from major grocery stores in Calgary (Alberta, Canada). Steak fatty acid compositions (backfat and longissimus lumborum muscle analysed separately) showed minor seasonal differences with lower total saturates (PB0.05) and higher total monounsaturates (PB 0.01) in winter, but no differences in total polyunsaturated fatty acids. The ratio of n-6 and n-3 polyunsaturated fatty acid in longissimus lumborum averaged 5.8. The average TFA content in longissimus lumborum was 0.128 g 100 g_1 serving size, and 10t-18:1 was found to be the predominant isomer (32% of total trans), while vaccenic acid was second most abundant (15% of total trans). The CLA content in longissimus lumborum was similar to that of backfat, ranging from 0.43 to 0.60% of total fatty acids and rumenic acid represented 60% of total isomers. Overall, there is still room for improvement in the saturated, mono- and polyunsaturated fatty acid composition of Canadian beef to meet general dietary guidelines for human consumption and additional targets should include reducing 10t-18:1 while increasing both rumenic and vaccenic acids.
Resumo:
11 p.
Resumo:
Background: Completing a marathon is one of the most challenging sports activities, yet the source of running fatigue during this event is not completely understood. The aim of this investigation was to determine the cause(s) of running fatigue during a marathon in warm weather. Methodology/Principal Findings: We recruited 40 amateur runners (34 men and 6 women) for the study. Before the race, body core temperature, body mass, leg muscle power output during a countermovement jump, and blood samples were obtained. During the marathon (27 uC; 27% relative humidity) running fatigue was measured as the pace reduction from the first 5-km to the end of the race. Within 3 min after the marathon, the same pre-exercise variables were obtained. Results: Marathoners reduced their running pace from 3.5 6 0.4 m/s after 5-km to 2.9 6 0.6 m/s at the end of the race (P,0.05), although the running fatigue experienced by the marathoners was uneven. Marathoners with greater running fatigue (. 15% pace reduction) had elevated post-race myoglobin (1318 6 1411 v 623 6 391 mg L21; P,0.05), lactate dehydrogenase (687 6 151 v 583 6 117 U L21; P,0.05), and creatine kinase (564 6 469 v 363 6 158 U L21; P = 0.07) in comparison with marathoners that preserved their running pace reasonably well throughout the race. However, they did not differ in their body mass change (23.1 6 1.0 v 23.0 6 1.0%; P = 0.60) or post-race body temperature (38.7 6 0.7 v 38.9 6 0.9 uC; P = 0.35). Conclusions/Significance: Running pace decline during a marathon was positively related with muscle breakdown blood markers. To elucidate if muscle damage during a marathon is related to mechanistic or metabolic factors requires further investigation.
Resumo:
PURPOSE: The main goals of the present study were: 1) to review some recommendations about how to increase lean body mass; 2) to analyse whether following scientific sources of current recommendations, visible changes can be shown or not in a participant (body composition, strength and blood analyses). METHODS: One male athlete completed 12 weeks of resistance training program and following a diet protocol. Some test were determined such as, strength 6RM, blood analyses, skindfold measurements, body perimeters and impedance test. Body composition measurements were taken 3 times during the program (before-T1, after 6 weeks of intervention period-T2 and at the end of the program-T3). On the other hand, strength tests and blood analyses were performed twice (before and after the program). RESULTS: Strength was increased in general; blood analyses showed that Creatine kinase was increased a 104% and Triglycerides level was decreased a 22.5%; in the impedance test, body mass (1.6%), lean body mass (3.5%) and Body mass index (1.7%) were increased, whereas fat mass was decreased (15.5%); relaxed and contracted biceps perimeters were also increased. CONCLUSION: A muscle hypertrophy training program mixed with an appropriate diet during 12 weeks leads to interesting adaptations related to increase in body weight, lean body mass, biceps perimeters, strength and creatine kinase levels, and a decrease in fat mass.
Resumo:
Myotonic dystrophy type 1 (DM1 or Steinert's disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3' untranslated region (UTR) of the Dystrophia ll/Iyotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9 (CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular degeneration seen in DM patients, highlighting the similarities found with muscle aging.
Resumo:
Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of alpha-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle-regulated by both diet and CB1 receptor activity-through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.