10 resultados para Methodology of the conceptual elaboration ferreiriana
Resumo:
In this article we describe the methodology developed for the semiautomatic annotation of EPEC-RolSem, a Basque corpus labeled at predicate level following the PropBank-VerbNet model. The methodology presented is the product of detailed theoretical study of the semantic nature of verbs in Basque and of their similarities and differences with verbs in other languages. As part of the proposed methodology, we are creating a Basque lexicon on the PropBank-VerbNet model that we have named the Basque Verb Index (BVI). Our work thus dovetails the general trend toward building lexicons from tagged corpora that is clear in work conducted for other languages. EPEC-RolSem and BVI are two important resources for the computational semantic processing of Basque; as far as the authors are aware, they are also the first resources of their kind developed for Basque. In addition, each entry in BVI is linked to the corresponding verb-entry in well-known resources like PropBank, VerbNet, WordNet, Levin’s Classification and FrameNet. We have also implemented several automatic processes to aid in creating and annotating the BVI, including processes designed to facilitate the task of manual annotation.
Resumo:
Background: Patients with chronic obstructive pulmonary disease (COPD) often experience exacerbations of the disease that require hospitalization. Current guidelines offer little guidance for identifying patients whose clinical situation is appropriate for admission to the hospital, and properly developed and validated severity scores for COPD exacerbations are lacking. To address these important gaps in clinical care, we created the IRYSS-COPD Appropriateness Study. Methods/Design: The RAND/UCLA Appropriateness Methodology was used to identify appropriate and inappropriate scenarios for hospital admission for patients experiencing COPD exacerbations. These scenarios were then applied to a prospective cohort of patients attending the emergency departments (ED) of 16 participating hospitals. Information was recorded during the time the patient was evaluated in the ED, at the time a decision was made to admit the patient to the hospital or discharge home, and during follow-up after admission or discharge home. While complete data were generally available at the time of ED admission, data were often missing at the time of decision making. Predefined assumptions were used to impute much of the missing data. Discussion: The IRYSS-COPD Appropriateness Study will validate the appropriateness criteria developed by the RAND/UCLA Appropriateness Methodology and thus better delineate the requirements for admission or discharge of patients experiencing exacerbations of COPD. The study will also provide a better understanding of the determinants of outcomes of COPD exacerbations, and evaluate the equity and variability in access and outcomes in these patients.
Resumo:
The aim of this study is to develop a reference model for intervention in the language processes applied to the transformation of language normalisation within organisations of a socio-economic nature. It is based on the case study of an experience carried out over10 years within a trades’ union confederation, and has pursued a strategy of a basically qualitative research carried out in three stages: 1) undertaking field work through application of action-research methodology, 2) reconstructing experiences following processes of systematisation and conceptualisation of the systematised data, applying methodologies for the Systematisation of Experiences and Grounded Theory, and 3) formulating a model for intervention, applying the Systems Approach methodology. Finally, we identified nine key ideas that make up the conceptual framework for the ENEKuS reference model, which is structured in nine ‘action points', each having an operating sub-model applicable in practice.
Resumo:
Contributed to: III Bienal de Restauración Monumental: "Sobre la des-restauración" (Sevilla, Spain, Nov 23-25, 2006)
Resumo:
19 p.
Resumo:
Background: Type-1 cannabinoid receptors (CB1R) are enriched in the hypothalamus, particularly in the ventromedial hypothalamic nucleus (VMH) that participates in homeostatic and behavioral functions including food intake. Although CB1R activation modulates excitatory and inhibitory synaptic transmission in the brain, CB1R contribution to the molecular architecture of the excitatory and inhibitory synaptic terminals in the VMH is not known. Therefore, the aim of this study was to investigate the precise subcellular distribution of CB1R in the VMH to better understand the modulation exerted by the endocannabinoid system on the complex brain circuitries converging into this nucleus. Methodology/Principal Findings: Light and electron microscopy techniques were used to analyze CB1R distribution in the VMH of CB1R-WT, CB1R-KO and conditional mutant mice bearing a selective deletion of CB1R in cortical glutamatergic (Glu-CB1R-KO) or GABAergic neurons (GABA-CB1R-KO). At light microscopy, CB1R immunolabeling was observed in the VMH of CB1R-WT and Glu-CB1R-KO animals, being remarkably reduced in GABA-CB1R-KO mice. In the electron microscope, CB1R appeared in membranes of both glutamatergic and GABAergic terminals/preterminals. There was no significant difference in the percentage of CB1R immunopositive profiles and CB1R density in terminals making asymmetric or symmetric synapses in CB1R-WT mice. Furthermore, the proportion of CB1R immunopositive terminals/preterminals in CB1R-WT and Glu-CB1R-KO mice was reduced in GABA-CB1R-KO mutants. CB1R density was similar in all animal conditions. Finally, the percentage of CB1R labeled boutons making asymmetric synapses slightly decreased in Glu-CB1R-KO mutants relative to CB1R-WT mice, indicating that CB1R was distributed in cortical and subcortical excitatory synaptic terminals. Conclusions/Significance: Our anatomical results support the idea that the VMH is a relevant hub candidate in the endocannabinoid-mediated modulation of the excitatory and inhibitory neurotransmission of cortical and subcortical pathways regulating essential hypothalamic functions for the individual's survival such as the feeding behavior.
Resumo:
Background: Over many years, it has been assumed that enzymes work either in an isolated way, or organized in small catalytic groups. Several studies performed using "metabolic networks models'' are helping to understand the degree of functional complexity that characterizes enzymatic dynamic systems. In a previous work, we used "dissipative metabolic networks'' (DMNs) to show that enzymes can present a self-organized global functional structure, in which several sets of enzymes are always in an active state, whereas the rest of molecular catalytic sets exhibit dynamics of on-off changing states. We suggested that this kind of global metabolic dynamics might be a genuine and universal functional configuration of the cellular metabolic structure, common to all living cells. Later, a different group has shown experimentally that this kind of functional structure does, indeed, exist in several microorganisms. Methodology/Principal Findings: Here we have analyzed around 2.500.000 different DMNs in order to investigate the underlying mechanism of this dynamic global configuration. The numerical analyses that we have performed show that this global configuration is an emergent property inherent to the cellular metabolic dynamics. Concretely, we have found that the existence of a high number of enzymatic subsystems belonging to the DMNs is the fundamental element for the spontaneous emergence of a functional reactive structure characterized by a metabolic core formed by several sets of enzymes always in an active state. Conclusions/Significance: This self-organized dynamic structure seems to be an intrinsic characteristic of metabolism, common to all living cellular organisms. To better understand cellular functionality, it will be crucial to structurally characterize these enzymatic self-organized global structures.
Resumo:
421 p.
Resumo:
Objective: to analyze what nursing models and nursing assessment structures have been used in the implementation of the nursing process at the public and private centers in the health area Gipuzkoa (Basque Country). Method: a retrospective study was undertaken, based on the analysis of the nursing records used at the 158 centers studied. Results: the Henderson model, Carpenito's bifocal structure, Gordon's assessment structure and the Resident Assessment Instrument Nursing Home 2.0 have been used as nursing models and assessment structures to implement the nursing process. At some centers, the selected model or assessment structure has varied over time. Conclusion: Henderson's model has been the most used to implement the nursing process. Furthermore, the trend is observed to complement or replace Henderson's model by nursing assessment structures.
Resumo:
Background Ubiquitination is known to regulate physiological neuronal functions as well as to be involved in a number of neuronal diseases. Several ubiquitin proteomic approaches have been developed during the last decade but, as they have been mostly applied to non-neuronal cell culture, very little is yet known about neuronal ubiquitination pathways in vivo. Methodology/Principal Findings Using an in vivo biotinylation strategy we have isolated and identified the ubiquitinated proteome in neurons both for the developing embryonic brain and for the adult eye of Drosophila melanogaster. Bioinformatic comparison of both datasets indicates a significant difference on the ubiquitin substrates, which logically correlates with the processes that are most active at each of the developmental stages. Detection within the isolated material of two ubiquitin E3 ligases, Parkin and Ube3a, indicates their ubiquitinating activity on the studied tissues. Further identification of the proteins that do accumulate upon interference with the proteasomal degradative pathway provides an indication of the proteins that are targeted for clearance in neurons. Last, we report the proof-of-principle validation of two lysine residues required for nSyb ubiquitination. Conclusions/Significance These data cast light on the differential and common ubiquitination pathways between the embryonic and adult neurons, and hence will contribute to the understanding of the mechanisms by which neuronal function is regulated. The in vivo biotinylation methodology described here complements other approaches for ubiquitome study and offers unique advantages, and is poised to provide further insight into disease mechanisms related to the ubiquitin proteasome system.