4 resultados para Maltose-binding protein


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two previously reported DNA polymorphisms of sterol regulatory element binding transcription factor 1 (SREBP1) and liver X receptor alpha (LXRα) and two DNA polymorphisms of fatty acid desaturase 1 (FADS1) were evaluated for associations with fatty acids in brisket adipose tissue of Canadian cross-bred beef steers. The polymorphism of 84 bp insert/deletion in intron 5 of SREBP1 was significantly associated with the concentration of 9c C17:1 (P=0.013). The G>A single nucleotide polymorphism (SNP) in the exon 4 of LXRα gene was associated with the concentration of 9c, 11t C18:2 (P=0.04), sum of conjugated linoleic acids (CLA) (P=0.025) and 11c C20:1(P=0.042). Two DNA polymorphisms in the promoter region of FADS1, deletion/insertion of ->GTG in rs133053720 and SNP A>G in rs42187276, were significantly associated with concentrations of C17:0 iso, C17:0 ai, total branched chain fatty acids (BFA), 12t C18:1, 13t/14t C18:1, 15t C18:1, and 13c C18:1 (P<0.05). Further studies are needed to validate the associations and to delineate the roles of the gene polymorphisms in determining the fatty acid composition in beef tissues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neurodevelopmental disruptions caused by obstetric complications play a role in the etiology of several phenotypes associated with neuropsychiatric diseases and cognitive dysfunctions. Importantly, it has been noticed that epigenetic processes occurring early in life may mediate these associations. Here, DNA methylation signatures at IGF2 (insulin-like growth factor 2) and IGF2BP1-3 (IGF2-binding proteins 1-3) were examined in a sample consisting of 34 adult monozygotic (MZ) twins informative for obstetric complications and cognitive performance. Multivariate linear regression analysis of twin data was implemented to test for associations between methylation levels and both birth weight (BW) and adult working memory (WM) performance. Familial and unique environmental factors underlying these potential relationships were evaluated. A link was detected between DNA methylation levels of two CpG sites in the IGF2BP1 gene and both BW and adult WM performance. The BW-IGF2BP1 methylation association seemed due to non-shared environmental factors influencing BW, whereas the WM-IGF2BP1 methylation relationship seemed mediated by both genes and environment. Our data is in agreement with previous evidence indicating that DNA methylation status may be related to prenatal stress and later neurocognitive phenotypes. While former reports independently detected associations between DNA methylation and either BW or WM, current results suggest that these relationships are not confounded by each other.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Myotonic dystrophy type 1 (DM1 or Steinert's disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3' untranslated region (UTR) of the Dystrophia ll/Iyotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9 (CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular degeneration seen in DM patients, highlighting the similarities found with muscle aging.