3 resultados para Kinetic enzymatic assays
Resumo:
Background: Cell-surface glycoproteins play critical roles in cell-to-cell recognition, signal transduction and regulation, thus being crucial in cell proliferation and cancer etiogenesis and development. DPP IV and NEP are ubiquitous glycopeptidases closely linked to tumor pathogenesis and development, and they are used as markers in some cancers. In the present study, the activity and protein and mRNA expression of these glycoproteins were analysed in a subset of clear-cell (CCRCC) and chromophobe (ChRCC) renal cell carcinomas, and in renal oncocytomas (RO). Methods: Peptidase activities were measured by conventional enzymatic assays with fluorogen-derived substrates. Gene expression was quantitatively determined by qRT-PCR and membrane-bound protein expression and distribution analysis was performed by specific immunostaining. Results: The activity of both glycoproteins was sharply decreased in the three histological types of renal tumors. Protein and mRNA expression was strongly downregulated in tumors from distal nephron (ChRCC and RO). Moreover, soluble DPP IV activity positively correlated with the aggressiveness of CCRCCs (higher activities in high grade tumors). Conclusions: These results support the pivotal role for DPP IV and NEP in the malignant transformation pathways and point to these peptidases as potential diagnostic markers.
Resumo:
232 p.
Resumo:
Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life.