12 resultados para Historical Mortality Events
Resumo:
Background: The impact of socio-demographic factors and baseline health on the mortality burden of seasonal and pandemic influenza remains debated. Here we analyzed the spatial-temporal mortality patterns of the 1918 influenza pandemic in Spain, one of the countries of Europe that experienced the highest mortality burden. Methods: We analyzed monthly death rates from respiratory diseases and all-causes across 49 provinces of Spain, including the Canary and Balearic Islands, during the period January-1915 to June-1919. We estimated the influenza-related excess death rates and risk of death relative to baseline mortality by pandemic wave and province. We then explored the association between pandemic excess mortality rates and health and socio-demographic factors, which included population size and age structure, population density, infant mortality rates, baseline death rates, and urbanization. Results: Our analysis revealed high geographic heterogeneity in pandemic mortality impact. We identified 3 pandemic waves of varying timing and intensity covering the period from Jan-1918 to Jun-1919, with the highest pandemic-related excess mortality rates occurring during the months of October-November 1918 across all Spanish provinces. Cumulative excess mortality rates followed a south-north gradient after controlling for demographic factors, with the North experiencing highest excess mortality rates. A model that included latitude, population density, and the proportion of children living in provinces explained about 40% of the geographic variability in cumulative excess death rates during 1918-19, but different factors explained mortality variation in each wave. Conclusions: A substantial fraction of the variability in excess mortality rates across Spanish provinces remained unexplained, which suggests that other unidentified factors such as comorbidities, climate and background immunity may have affected the 1918-19 pandemic mortality rates. Further archeo-epidemiological research should concentrate on identifying settings with combined availability of local historical mortality records and information on the prevalence of underlying risk factors, or patient-level clinical data, to further clarify the drivers of 1918 pandemic influenza mortality.
Resumo:
Contributed to: Fusion of Cultures: XXXVIII Annual Conference on Computer Applications and Quantitative Methods in Archaeology – CAA2010 (Granada, Spain, Apr 6-9, 2010)
Resumo:
17 p.
Resumo:
4 p.
Resumo:
28 p.
Resumo:
20 p.
Resumo:
La actividad aseguradora supone la transferencia de riesgos del asegurado al asegurador. El asegurador se compromete al pago de una prestación si el riesgo se realiza. Se produce un cambio en el ciclo productivo. El asegurador vende una cobertura sin conocer el momento y el coste exacto de dicha cobertura. Esta particularidad de la actividad aseguradora explica la necesidad para una entidad aseguradora de ser solvente en cada momento y ante cualquier imprevisto. Por ello, la solvencia de las entidades aseguradoras es un aspecto que se ha ido recogiendo en las distintas normativas que han regulado la actividad aseguradora y al que se ha ido dando cada vez más importancia. Actualmente la legislación vigente en materia de solvencia de las aseguradoras esta regulada por la directiva europea Solvencia I. Esta directiva establece dos conceptos para garantizar la solvencia: las provisiones técnicas y el margen de solvencia. Las provisiones técnicas son las calculadas para garantizar la solvencia estática de la compañía, es decir aquella que hace frente, en un instante temporal determinado, a los compromisos asumidos por la entidad. El margen de solvencia se destina a cubrir la solvencia dinámica, aquella que hace referencia a eventos futuros que puedan afectar la capacidad del asegurador. Sin embargo en una corriente de gestión global del riesgo en la que el sector bancario ya se había adelantado al sector asegurador con la normativa Basilea II, se decidió iniciar un proyecto europeo de reforma de Solvencia I y en noviembre del 2009 se adoptó la directiva 2009/138/CE del parlamento europeo y del consejo, sobre el seguro de vida, el acceso a la actividad de seguro y de reaseguro y su ejercicio mas conocida como Solvencia II. Esta directiva supone un profundo cambio en las reglas actuales de solvencia para las entidades aseguradoras. Este cambio persigue el objetivo de establecer un marco regulador común a nivel europeo que sea más adaptado al perfil de riesgo de cada entidad aseguradora. Esta nueva directiva define dos niveles distintos de capital: el SCR (requerimiento estándar de capital de solvencia) y el MCR (requerimiento mínimo de capital). Para el calculo del SCR se ha establecido que el asegurador tendrá la libertad de elegir entre dos modelos. Un modelo estándar propuesto por la Autoridad Europea de Seguros y Pensiones de Jubilación (EIOPA por sus siglas en inglés), que permitirá un calculo simple, y un modelo interno desarrollado por la propia entidad que deberá ser aprobado por las autoridades competentes. También se contempla la posibilidad de utilizar un modelo mixto que combine ambos, el estándar y el interno. Para el desarrollo del modelo estándar se han realizado una serie de estudios de impacto cuantitativos (QIS). El último estudio (QIS 5) ha sido el que ha planteado de forma más precisa el cálculo del SCR. Plantea unos shocks que se deberán de aplicar al balance de la entidad con el objetivo de estresarlo, y en base a los resultados obtenidos constituir el SCR. El objetivo de este trabajo es realizar una síntesis de las especificaciones técnicas del QIS5 para los seguros de vida y realizar una aplicación práctica para un seguro de vida mixto puro. En la aplicación práctica se determinarán los flujos de caja asociados a este producto para calcular su mejor estimación (Best estimate). Posteriormente se determinará el SCR aplicando los shocks para los riesgos de mortalidad, rescates y gastos. Por último, calcularemos el margen de riesgo asociado al SCR. Terminaremos el presente TFG con unas conclusiones, la bibliografía empleada así como un anexo con las tablas empleadas.
Resumo:
Background: Limited information is available about predictors of short-term outcomes in patients with exacerbation of chronic obstructive pulmonary disease (eCOPD) attending an emergency department (ED). Such information could help stratify these patients and guide medical decision-making. The aim of this study was to develop a clinical prediction rule for short-term mortality during hospital admission or within a week after the index ED visit. Methods: This was a prospective cohort study of patients with eCOPD attending the EDs of 16 participating hospitals. Recruitment started in June 2008 and ended in September 2010. Information on possible predictor variables was recorded during the time the patient was evaluated in the ED, at the time a decision was made to admit the patient to the hospital or discharge home, and during follow-up. Main short-term outcomes were death during hospital admission or within 1 week of discharge to home from the ED, as well as at death within 1 month of the index ED visit. Multivariate logistic regression models were developed in a derivation sample and validated in a validation sample. The score was compared with other published prediction rules for patients with stable COPD. Results: In total, 2,487 patients were included in the study. Predictors of death during hospital admission, or within 1 week of discharge to home from the ED were patient age, baseline dyspnea, previous need for long-term home oxygen therapy or non-invasive mechanical ventilation, altered mental status, and use of inspiratory accessory muscles or paradoxical breathing upon ED arrival (area under the curve (AUC) = 0.85). Addition of arterial blood gas parameters (oxygen and carbon dioxide partial pressures (PO2 and PCO2)) and pH) did not improve the model. The same variables were predictors of death at 1 month (AUC = 0.85). Compared with other commonly used tools for predicting the severity of COPD in stable patients, our rule was significantly better. Conclusions: Five clinical predictors easily available in the ED, and also in the primary care setting, can be used to create a simple and easily obtained score that allows clinicians to stratify patients with eCOPD upon ED arrival and guide the medical decision-making process.
Resumo:
To achieve the apparently simple Periodic Table of the Elements has implied tremendous efforts over thousands of years. In this paper we present a brief history of the discovery of the chemical elements from prehistory to the present day, revealing the controversies that arose on the way and claiming the important work performed by alchemists in the advancement of knowledge. This is especially important if we consider that alchemy had a period of existence of many thousands of years, while the "Chemistry", officially established as a science in the eighteenth century, has operated as such for only a few hundred years. Even so, if we consider the progress of discovery and isolation of chemical elements throughout history, it can be observed that the number of elements identified is achieved mainly in the nineteenth and twentieth centuries, reflecting the development of instrumental techniques, that facilitated this task.
Resumo:
[EN] The goal of this contribution is twofold: on the one hand, to review two relatively recent contributions in the field of Eskimo-Aleut historical linguistics in which it is proposed that Eskimo-Aleut languages are related genealogically to Wakashan (Holst 2004) and?/or Nostratic (Krougly-Enke 2008). These contributions can be characterized by saying that their authors have taken little care to be diligent and responsible in the application of the comparative method, and that their familiarity with the languages involved is insufficient. Eskimo-Aleut languages belong to a very exclusive group of language families that have been (and still are) used, sometimes compulsively, in the business of so-called “long-range comparisons”. Those carrying out such studies are very often unaware of the most basic facts regarding the philological and linguistic traditions of those languages, as a result of what mountains of very low quality works with almost no-relevancy for the specialist grow every year to the desperation of the scientific community, whose attitude toward them ranges from the most profound indifference to the toughest (and most explicit) critical tone. Since Basque also belongs to this group of “compare-with-everything-you-come- across” languages, it is my intention to provide the Basque readership with a sort of “pedagogical case” to show that little known languages, far from underrepresented in the field, already have a very long tradition in historical and comparative linguistics, i.e. nobody can approach them without previous acquaintance with the materials. Studies dealing with the methodological inappropriateness of the Moscow School’s Nostratic hypothesis or the incorrectness of many of the proposed new taxonomic Amerindian subfamilies (several of them involving the aforementioned Wakashan languages), that is to say, the frameworks on which Krougly-Enke and Holst work, respectively, are plenty (i.a. Campbell 1997: 260-329, Campbell & Poser 2008: 234-96), therefore there is no reason to insist once more on the very same point. This is the reason why I will not discuss per se Eskimo-Aleut–Wakashan or Eskimo-Aleut–Nostratic. On the contrary, I will focus attention upon very concrete aspects of Krougly-Enke and Holst´s proposals, i.e. when they work on “less ambitious” problems, for example, dealing with the minutiae of internal facts or analyzing certain words from the sole perspective of Eskimo-Aleut materials (in other words, those cases in which even they do not invoke the ad hoc help of Nostratic stuff). I will try to explain why some of their proposals are wrong, demonstrate where the problem lies, and fix it if possible. In doing so, I will propose new etymologies in an attempt at showing how we may proceed. The main difference between this and handbook examples lies in the reality of what we are doing: this is a pure etymological exercise from beginning to end. I will try to throw a bit of light on a couple of problematic questions regarding Aleut historical phonology, demonstrating how much work should be done at the lowest level of the Eskimo-Aleut pyramid; it is technically impossible to reach the peak of the pyramid without having completed the base. As far as Aleut is regarded, I will mainly profit not only from the use of the traditional philological analysis of Aleut (and, eventually, of Eskimo) materials, but also of diachronic typology, bringing into discussion what in my opinion seems useful, and in some cases I think decisive, parallels. It is worth noting that this paper makes up yet another part of a series of exploratory works dealing with etymological aspects of the reconstruction of Proto-Eskimo-Aleut, with special emphasis on Aleut (vid. i.a. Alonso de la Fuente 2006/2007, 2008a, 2008b, 2010a), whose main goal is to become the solid basis for an etymological dictionary of the Aleut language, currently in progress.
Resumo:
Background: The European mink (Mustela lutreola, L. 1761) is a critically endangered mustelid, which inhabits several main river drainages in Europe. Here, we assess the genetic variation of existing populations of this species, including new sampling sites and additional molecular markers (newly developed microsatellite loci specific to European mink) as compared to previous studies. Probabilistic analyses were used to examine genetic structure within and between existing populations, and to infer phylogeographic processes and past demography. Results: According to both mitochondrial and nuclear microsatellite markers, Northeastern (Russia, Estonia and Belarus) and Southeastern (Romania) European populations showed the highest intraspecific diversity. In contrast, Western European (France and Spain) populations were the least polymorphic, featuring a unique mitochondrial DNA haplotype. The high differentiation values detected between Eastern and Western European populations could be the result of genetic drift in the latter due to population isolation and reduction. Genetic differences among populations were further supported by Bayesian clustering and two main groups were confirmed (Eastern vs. Western Europe) along with two contained subgroups at a more local scale (Northeastern vs. Southeastern Europe; France vs. Spain). Conclusions: Genetic data and performed analyses support a historical scenario of stable European mink populations, not affected by Quaternary climate oscillations in the Late Pleistocene, and posterior expansion events following river connections in both North-and Southeastern European populations. This suggests an eastern refuge during glacial maxima (as already proposed for boreal and continental species). In contrast, Western Europe was colonised more recently following either natural expansions or putative human introductions. Low levels of genetic diversity observed within each studied population suggest recent bottleneck events and stress the urgent need for conservation measures to counteract the demographic decline experienced by the European mink.
Resumo:
The importance of the process of Neolithization for the genetic make-up of European populations has been hotly debated, with shifting hypotheses from a demic diffusion (DD) to a cultural diffusion (CD) model. In this regard, ancient DNA data from the Balkan Peninsula, which is an important source of information to assess the process of Neolithization in Europe, is however missing. In the present study we show genetic information on ancient populations of the South-East of Europe. We assessed mtDNA from ten sites from the current territory of Romania, spanning a time-period from the Early Neolithic to the Late Bronze Age. mtDNA data from Early Neolithic farmers of the Starcevo Cris culture in Romania (Carcea, Gura Baciului and Negrilesti sites), confirm their genetic relationship with those of the LBK culture (Linienbandkeramik Kultur) in Central Europe, and they show little genetic continuity with modern European populations. On the other hand, populations of the Middle-Late Neolithic (Boian, Zau and Gumelnita cultures), supposedly a second wave of Neolithic migration from Anatolia, had a much stronger effect on the genetic heritage of the European populations. In contrast, we find a smaller contribution of Late Bronze Age migrations to the genetic composition of Europeans. Based on these findings, we propose that permeation of mtDNA lineages from a second wave of Middle-Late Neolithic migration from North-West Anatolia into the Balkan Peninsula and Central Europe represent an important contribution to the genetic shift between Early and Late Neolithic populations in Europe, and consequently to the genetic make-up of modern European populations.