3 resultados para Germanium junctionless nanowire transistor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have grown an atom-thin, ordered, two-dimensional multi-phase film in situ through germanium molecular beam epitaxy using a gold (111) surface as a substrate. Its growth is similar to the formation of silicene layers on silver (111) templates. One of the phases, forming large domains, as observed in scanning tunneling microscopy, shows a clear, nearly flat, honeycomb structure. Thanks to thorough synchrotron radiation core-level spectroscopy measurements and advanced density functional theory calculations we can identify it as a root 3 x root 3 R(30 degrees) germanene layer in conjunction with a root 7 x root 7 R(19.1 degrees) Au(111) supercell, presenting compelling evidence of the synthesis of the germanium-based cousin of graphene on gold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

170 p.