9 resultados para Generalized Basic Hypergeometric Functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an extended version of the basic New Keynesian monetary (NKM) model which contemplates revision processes of output and inflation data in order to assess the importance of data revisions on the estimated monetary policy rule parameters and the transmission of policy shocks. Our empirical evidence based on a structural econometric approach suggests that although the initial announcements of output and inflation are not rational forecasts of revised output and inflation data, ignoring the presence of non well-behaved revision processes may not be a serious drawback in the analysis of monetary policy in this framework. However, the transmission of inflation-push shocks is largely affected by considering data revisions. The latter being especially true when the nominal stickiness parameter is estimated taking into account data revision processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper relies on the study of fixed points and best proximity points of a class of so-called generalized point-dependent (K-Lambda)hybrid p-cyclic self-mappings relative to a Bregman distance Df, associated with a Gâteaux differentiable proper strictly convex function f in a smooth Banach space, where the real functions Lambda and K quantify the point-to-point hybrid and nonexpansive (or contractive) characteristics of the Bregman distance for points associated with the iterations through the cyclic self-mapping.Weak convergence results to weak cluster points are obtained for certain average sequences constructed with the iterates of the cyclic hybrid self-mappings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is devoted to the study of convergence properties of distances between points and the existence and uniqueness of best proximity and fixed points of the so-called semicyclic impulsive self-mappings on the union of a number of nonempty subsets in metric spaces. The convergences of distances between consecutive iterated points are studied in metric spaces, while those associated with convergence to best proximity points are set in uniformly convex Banach spaces which are simultaneously complete metric spaces. The concept of semicyclic self-mappings generalizes the well-known one of cyclic ones in the sense that the iterated sequences built through such mappings are allowed to have images located in the same subset as their pre-image. The self-mappings under study might be in the most general case impulsive in the sense that they are composite mappings consisting of two self-mappings, and one of them is eventually discontinuous. Thus, the developed formalism can be applied to the study of stability of a class of impulsive differential equations and that of their discrete counterparts. Some application examples to impulsive differential equations are also given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]The Mallows and Generalized Mallows models are compact yet powerful and natural ways of representing a probability distribution over the space of permutations. In this paper we deal with the problems of sampling and learning (estimating) such distributions when the metric on permutations is the Cayley distance. We propose new methods for both operations, whose performance is shown through several experiments. We also introduce novel procedures to count and randomly generate permutations at a given Cayley distance both with and without certain structural restrictions. An application in the field of biology is given to motivate the interest of this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]Probability models on permutations associate a probability value to each of the permutations on n items. This paper considers two popular probability models, the Mallows model and the Generalized Mallows model. We describe methods for making inference, sampling and learning such distributions, some of which are novel in the literature. This paper also describes operations for permutations, with special attention in those related with the Kendall and Cayley distances and the random generation of permutations. These operations are of key importance for the efficient computation of the operations on distributions. These algorithms are implemented in the associated R package. Moreover, the internal code is written in C++.