15 resultados para Dextransucrase assays
Resumo:
7 p.
Resumo:
Microbe-Associated Molecular Patterns and virulence effectors are recognized by plants as a first step to mount a defence response against potential pathogens. This recognition involves a large family of extracellular membrane receptors and other immune proteins located in different sub-cellular compartments. We have used phage-display technology to express and select for Arabidopsis proteins able to bind bacterial pathogens. To rapidly identify microbe-bound phage, we developed a monitoring method based on microarrays. This combined strategy allowed for a genome-wide screening of plant proteins involved in pathogen perception. Two phage libraries for high-throughput selection were constructed from cDNA of plants infected with Pseudomonas aeruginosa PA14, or from combined samples of the virulent isolate DC3000 of Pseudomonas syringae pv. tomato and its avirulent variant avrRpt2. These three pathosystems represent different degrees in the specificity of plant-microbe interactions. Libraries cover up to 26107 different plant transcripts that can be displayed as functional proteins on the surface of T7 bacteriophage. A number of these were selected in a bio-panning assay for binding to Pseudomonas cells. Among the selected clones we isolated the ethylene response factor ATERF-1, which was able to bind the three bacterial strains in competition assays. ATERF-1 was rapidly exported from the nucleus upon infiltration of either alive or heat-killed Pseudomonas. Moreover, aterf-1 mutants exhibited enhanced susceptibility to infection. These findings suggest that ATERF-1 contains a microbe-recognition domain with a role in plant defence. To identify other putative pathogen-binding proteins on a genome-wide scale, the copy number of selected-vs.-total clones was compared by hybridizing phage cDNAs with Arabidopsis microarrays. Microarray analysis revealed a set of 472 candidates with significant fold change. Within this set defence-related genes, including well-known targets of bacterial effectors, are over-represented. Other genes non-previously related to defence can be associated through this study with general or strain-specific recognition of Pseudomonas.
Resumo:
12 p.
Resumo:
Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a beta-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.
Resumo:
353 págs.
Resumo:
11 p.
Resumo:
Background: Cell-surface glycoproteins play critical roles in cell-to-cell recognition, signal transduction and regulation, thus being crucial in cell proliferation and cancer etiogenesis and development. DPP IV and NEP are ubiquitous glycopeptidases closely linked to tumor pathogenesis and development, and they are used as markers in some cancers. In the present study, the activity and protein and mRNA expression of these glycoproteins were analysed in a subset of clear-cell (CCRCC) and chromophobe (ChRCC) renal cell carcinomas, and in renal oncocytomas (RO). Methods: Peptidase activities were measured by conventional enzymatic assays with fluorogen-derived substrates. Gene expression was quantitatively determined by qRT-PCR and membrane-bound protein expression and distribution analysis was performed by specific immunostaining. Results: The activity of both glycoproteins was sharply decreased in the three histological types of renal tumors. Protein and mRNA expression was strongly downregulated in tumors from distal nephron (ChRCC and RO). Moreover, soluble DPP IV activity positively correlated with the aggressiveness of CCRCCs (higher activities in high grade tumors). Conclusions: These results support the pivotal role for DPP IV and NEP in the malignant transformation pathways and point to these peptidases as potential diagnostic markers.
Resumo:
[EN] Diabetic foot ulcers (DFUs) represent a major clinical challenge in the ageing population. To address this problem, rhEGF-loaded Poly-Lactic-co-Glycolic-Acid (PLGA)-Alginate microspheres (MS) were prepared by a modified w/o/w-doubleemulsion/ solvent evaporation method. Different formulations were evaluated with the aim of optimising MSs properties by adding NaCl to the surfactant solution and/or the solvent removal phase and adding alginate as a second polymer. The characterization of the developed MS showed that alginate incorporation increased the encapsulation efficiency (EE) and NaCl besides increasing the EE also became the particle surface smooth and regular. Once the MS were optimised, the target loading of rhEGF was increased to 1% (PLGA-Alginate MS), and particles were sterilised by gamma radiation to provide the correct dosage for in vivo studies. In vitro cell culture assays demonstrated that neither the microencapsulation nor the sterilisation process affected rhEGF bioactivity or rhEGF wound contraction. Finally, the MS were evaluated in vivo for treatment of the full-thickness wound model in diabetised Wistar rats. rhEGF MS treated animals showed a statistically significant decrease of the wound area by days 7 and 11, a complete re-epithelisation by day 11 and an earlier resolution of the inflammatory process. Overall, these findings demonstrate the promising potential of rhEGF-loaded MS (PLGA-Alginate MS) to promote faster and more effective wound healing, and suggest its possible application in DFU treatment.
Resumo:
Background: Excessive apoptosis induces unwanted cell death and promotes pathological conditions. Drug discovery efforts aimed at decreasing apoptotic damage initially targeted the inhibition of effector caspases. Although such inhibitors were effective, safety problems led to slow pharmacological development. Therefore, apoptosis inhibition is still considered an unmet medical need. Methodology and Principal Findings: The interaction between Apaf-1 and the inhibitors was confirmed by NMR. Target specificity was evaluated in cellular models by siRNa based approaches. Cell recovery was confirmed by MTT, clonogenicity and flow cytometry assays. The efficiency of the compounds as antiapoptotic agents was tested in cellular and in vivo models of protection upon cisplatin induced ototoxicity in a zebrafish model and from hypoxia and reperfusion kidney damage in a rat model of hot ischemia. Conclusions: Apaf-1 inhibitors decreased Cytc release and apoptosome-mediated activation of procaspase-9 preventing cell and tissue damage in ex vivo experiments and in vivo animal models of apoptotic damage. Our results provide evidence that Apaf-1 pharmacological inhibition has therapeutic potential for the treatment of apoptosis-related diseases.
Resumo:
In a multi-target complex network, the links (L-ij) represent the interactions between the drug (d(i)) and the target (t(j)), characterized by different experimental measures (K-i, K-m, IC50, etc.) obtained in pharmacological assays under diverse boundary conditions (c(j)). In this work, we handle Shannon entropy measures for developing a model encompassing a multi-target network of neuroprotective/neurotoxic compounds reported in the CHEMBL database. The model predicts correctly >8300 experimental outcomes with Accuracy, Specificity, and Sensitivity above 80%-90% on training and external validation series. Indeed, the model can calculate different outcomes for >30 experimental measures in >400 different experimental protocolsin relation with >150 molecular and cellular targets on 11 different organisms (including human). Hereafter, we reported by the first time the synthesis, characterization, and experimental assays of a new series of chiral 1,2-rasagiline carbamate derivatives not reported in previous works. The experimental tests included: (1) assay in absence of neurotoxic agents; (2) in the presence of glutamate; and (3) in the presence of H2O2. Lastly, we used the new Assessing Links with Moving Averages (ALMA)-entropy model to predict possible outcomes for the new compounds in a high number of pharmacological tests not carried out experimentally.
Resumo:
[ES]La industria aeronáutica se ha convertido en los últimos tiempos en uno de los sectores más innovadores. Una de las características de este sector es que exige una amplia gama de materiales con propiedades únicas como las superaleaciones en base Ni MARM247 y C1023, que son materiales nuevos que parecen tener un comportamiento ideal para su uso en turbinas. El objetivo de este proyecto es obtener en un mismo documento todos los datos posibles, tanto teóricos como empíricos de estos materiales. El proyecto se puede dividir en dos partes: investigación de la mayor cantidad de información y realizar algunos ensayos con muestras.
Resumo:
Based on numerous pharmacological studies that have revealed an interaction between cannabinoid and opioid systems at the molecular, neurochemical, and behavioral levels, a new series of hybrid molecules has been prepared by coupling the molecular features of two well-known drugs, ie, rimonabant and fentanyl. The new compounds have been tested for their affinity and functionality regarding CB1 and CB2 cannabinoid and mu opioid receptors. In [S-35]-GTP.S (guanosine 5'-O-[gamma-thio] triphosphate) binding assays from the post-mortem human frontal cortex, they proved to be CB1 cannabinoid antagonists and mu opioid antagonists. Interestingly, in vivo, the new compounds exhibited a significant dual antagonist action on the endocannabinoid and opioid systems.
Resumo:
Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag.
Resumo:
[en]Human papillomavirus (HPV) belongs to the Papillomaviridae virus family and it is one of the most common sexual transmission infections. HPV genome is composed of eight genes, including two early genes and six late genes. Among these late genes, E6 and E7 code for proteins that trigger cell-cycle re-entry in infected cells, which can lead to cervical cancer development. The IARC (International Agency for Research Cancer) proposed a guideline based on Hill’s criteria to determine whether the relation between HPV infection and cervical cancer is causal or not. Epidemiological studies have demonstrated that HPV infection is a necessary but non-sufficient cause for cervical cancer. Furthermore, HPV infection is considered the first necessary cause described of a human cancer, being HPV16 and 18 carcinogenic to humans and the most studied types. Cervical cancer is the second leading cause of cancer death among women worldwide. Different screening programs are carried out with the aim of preventing cervical cancer; such as cytologies and HPV tests. There are two main methods which are equally usable to detect HPV: the real-time PCR assays and the array assays. Regarding the molecular mechanisms of HPV mediated malignancies, E2, E6 and E7 proteins of HPV16 lead to immune response evasion, inducing IL-10 and TGF-β1 gene expression. Besides, E6 and E7 proteins allow cell-cycle reentry, phosphorylating RB and ubiquitinating p53 respectively. HPV genome integration in host genome leads to the alteration of host and viral genes expression, including oncogenes and tumor suppressor genes. However, the differences of E6 and E7 oncoproteins in different HPV types is poorly known due to the fact that almost the most studied HPV type has been HPV16.
Resumo:
Background: In complex with its cofactor UAF1, the USP1 deubiquitinase plays an important role in cellular processes related to cancer, including the response to DNA damage. The USP1/UAF1 complex is emerging as a novel target in cancer therapy, but several aspects of its function and regulation remain to be further clarified. These include the role of the serine 313 phosphorylation site, the relative contribution of different USP1 sequence motifs to UAF1 binding, and the potential effect of cancer-associated mutations on USP1 regulation by autocleavage. Methods: We have generated a large set of USP1 structural variants, including a catalytically inactive form (C90S), non-phosphorylatable (S313A) and phosphomimetic (S313D) mutants, deletion mutants lacking potential UAF1 binding sites, a mutant (GG/AA) unable to undergo autocleavage at the well-characterized G670/G671 diglycine motif, and four USP1 mutants identified in tumor samples that cluster around this cleavage site (G667A, L669P, K673T and A676T). Using cell-based assays, we have determined the ability of these mutants to bind UAF1, to reverse DNA damage-induced monoubiquitination of PCNA, and to undergo autocleavage. Results: A non-phosphorylatable S313A mutant of USP1 retained the ability to bind UAF1 and to reverse PCNA ubiquitination in cell-based assays. Regardless of the presence of a phosphomimetic S313D mutation, deletion of USP1 fragment 420-520 disrupted UAF1 binding, as determined using a nuclear relocation assay. The UAF1 binding site in a second UAF1-interacting DUB, USP46, was mapped to a region homologous to USP1(420-520). Regarding USP1 autocleavage, co-expression of the C90S and GG/AA mutants did not result in cleavage, while the cancer-associated mutation L669P was found to reduce cleavage efficiency. Conclusions: USP1 phosphorylation at S313 is not critical for PCNA deubiquitination, neither for binding to UAF1 in a cellular environment. In this context, USP1 amino acid motif 420-520 is necessary and sufficient for UAF1 binding. This motif, and a homologous amino acid segment that mediates USP46 binding to UAF1, map to the Fingers sub-domain of these DUBs. On the other hand, our results support the view that USP1 autocleavage may occur in cis, and can be altered by a cancer-associated mutation.